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Abstract 

This thesis explores the nature of knowledge in physics and the discourse that organises it. In 

particular, it focuses on the affordances of mathematics, image and language for construing 

the highly technical meanings that constitute this knowledge. It shows that each of these 

resources play a crucial role in physics’ ability to generate generalised theory whilst 

maintaining relevance to the empirical physical world. 

First, to understand how mathematics contributes to knowledge-building, the thesis presents a 

detailed descriptive model from the perspective of Systemic Functional Semiotics that 

considers mathematics on its own terms. The description builds on O’Halloran’s (2005) 

grammar in order to understand mathematics’ intrinsic functionality and theoretical 

architecture. In doing so, it takes an axial perspective (Martin 2013) that considers the 

paradigmatic and syntagmatic axes in Systemic Functional theory as the theoretical 

primitives from which metafunction, strata, rank and all other theoretical categories can be 

derived. It shows that, when not transposing categories from English but rather deriving them 

from axial principles, mathematics’ theoretical architecture is considerably different to that of 

any resource previously seen. Looking metafunctionally, mathematics displays a highly 

elaborated logical component within the ideational metafunction, but shows no evidence for a 

discrete interpersonal metafunction. Looking at the levels within the grammar, it displays two 

interacting hierarchies: a rank scale based on constituency and a nesting scale based on 

iterative layering. Finally, it shows distinct and predictable texts patterns in its interaction 

with language. From this, the description is able to use genre as a unifying semiotic that 

strongly predicts the grammatical patterns that occur throughout physics discourse. By 

developing these models, the thesis offers an understanding of mathematics’ unique 

functionality and the reasons it is consistently used in physics. 

Second, the thesis interprets the images of physics from the perspective of the Systemic 

Functional dimension of field. It shows that much of the power of images comes from the 

large number of distinct meanings that can be encapsulated in a single snapshot. In one image, 

large taxonomies, long sequences of activity, extensive arrays of data and various levels of 

specificity can all be presented. This allows various components of physics’ knowledge to be 

related and coordinated, and aids physics in building a coherent and integrated knowledge 

structure. 
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Following the descriptive component of the thesis, the specific functionalities of mathematics, 

image and language are interpreted through the Legitimation Code Theory dimension of 

Semantics. This provides an understanding of the organisation of physics’ knowledge 

structure as a whole. It shows how the interaction of mathematics, language and image 

underpins physics’ ability to progressively build ever more elaborated technical meanings, to 

make empirical predictions from theoretical models and to abstract theoretical generalisations 

from empirical data. By interpreting the mathematics, image and language used in physics 

from the complementary perspectives of Systemic Functional Semiotics and Legitimation 

Code Theory, the thesis offers a detailed model of how physics manages to make sense of 

and predict the vast physical world.
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 CHAPTER 1 

Physics, Knowledge and Semiosis 

 

“Physics is hard.” Remarks such as these have been heard by teachers and students of physics 

innumerable times. Physics of course has its own object of study, its own ways of organising 

its knowledge and its own ways of expressing its knowledge. In this sense, it is its own 

unique discipline. But this does not mark physics as different from any other academic 

subject; every discipline has its intricacies and idiosyncrasies, and every subject has its 

detractors and its devotees. Nonetheless, physics seems to be regularly positioned as an 

exceptional case in the academic world. It is often said to be the most fundamental of the 

sciences, one upon which all others are based (e.g. Feynman et al. 1964, Young and 

Freedman 2012); this perhaps can be taken to mean that it shares many of the characteristics 

of the others sciences, but also maintains its own distinctive features. Biglan (1973), for 

example, classifies physics as a pure science, along with geology, chemistry and botany, but 

he positions it as the ‘hardest’ of the pure sciences. Kolb (1981) characterises it as a reflective 

(non-applied) discipline, like geography, bacteriology and biochemistry, but he portrays it as 

the most ‘abstract’ of the reflective disciplines. And those following Bernstein (1999) 

identify it with other natural sciences as a discipline that develops generalised theories and 

integrates empirical phenomena, but they regularly use physics as the exemplar of such a 

discipline (Maton and Muller 2007, O’Halloran 2007a, Martin 2011b). 

There is thus a sense that physics is both a natural science, and as such shares many of the 

features of the natural sciences; but at the same time physics is in some sense the most 

‘sciencey’ of the natural sciences. Exactly how this recurrent characterisation of physics 

arises, however, is not clear. We might even ask whether it is truly the case that physics 

maintains a special position within the sciences? And if so, what gives rise to this special 

position? Questions such as these go to the heart of the disciplinary organisation of physics, 

and so are not born of idle curiosity. They hold strong significance for the development of 

educational programs that acknowledge and target disciplinary knowledge. If disciplines vary 

in the way they organise their knowledge, vary in the discourse they use to construe this 
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knowledge and vary in the means of judging and comparing competing knowledges, the 

pedagogic approach for teaching these disciplines must take this into account. 

1.1 Knowledge and education 

In response to the disciplinary nature of knowledge, the last few decades have seen the 

development of an influential educational linguistics program, known as ‘Sydney School’ 

genre pedagogy.
1
 This approach arises from the linguistic theory generally referred to as 

Systemic Functional Linguistics (hereafter SFL) and specifically targets knowledge 

differences across the disciplinary spectrum. The program develops explicit pedagogy across 

all areas of schooling and aims to ensure access for all students regardless of their 

background. In order to do this, it addresses the specialised ways each subject organises its 

knowledge, as well as the literacy practices that are associated with it; this is instead of 

offering a generic pedagogy that generalises across disciplinary differences (for an 

introduction to this pedagogy, see Rose and Martin 2012). 

Sydney school genre pedagogy developed out of research into the types of texts students need 

to read and write across subject areas in primary (elementary) and high school. These projects 

were known as the Writing Project, Language and Social Power, and Write it Right projects 

(for an overview of these projects, see Veel 2008 and Rose and Martin 2012; for a collection 

of foundational papers in SFL educational linguistics, see Martin and Doran 2015e). This 

research showed that each subject regularly utilised only a small set of text types to organise 

their disciplinary knowledge. Science, for example, involved factual texts known as reports 

and explanations that were geared toward ‘content’ knowledge. These genres built 

taxonomies that organise phenomena in terms of classification and composition, and 

established sequences of processes these phenomena were involved with (Martin and Rose 

2008, Met. East DSP 1995a). Visual arts, on the other hand, more commonly required texts 

that gave a student’s response to or evaluation, interpretation or critique of an artwork (Met. 

East DSP 1994, 1995b). This necessitated students develop the ability to judge a pre-existing 

artwork or the process that led to its creation. With the difference in text type came 

concomitant differences in the language used. For example, where visual art’s evaluative 

responses required students to marshal a broad range of evaluative language to appreciate the 

                                                           
1
 As Martin (2006a) and Rose and Martin (2012), who were two of the key developers of the Sydney School, 

acknowledge, this name is misleading, since by the time the name was first used (Green and Lee 1994) the 

development of the program was by no means confined to Sydney, having spread across Australia as far as 

practice, innovation and development were concerned. 
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artwork, judge the artist or express their emotional responses, scientific texts were relatively 

non-attitudinal
2
 (see Martin and White 2005 for a detailed exploration of the evaluative 

resources in English). Over time, research in this tradition has expanded its breadth to include 

a large range of subject areas, and in doing so has progressively elaborated a picture of the 

varying literacy demands placed on students across the curriculum. 

With significant variation in each subject’s literacy requirements comes differences in each 

discipline’s knowledge itself. What is accepted as valid knowledge and the means for judging 

competing knowledges in one discipline is typically very different to that of another 

discipline. In developing a discipline-sensitive pedagogy these variations need to be carefully 

considered. However, as Maton (2014) argues, despite knowledge-building being at first sight 

the raison d’être of education, educational research tends to have a blind-spot when it comes 

to actually seeing knowledge; like language, knowledge structure is often taken for granted. 

This ‘knowledge-blindness’ means that the principles underpinning the various educational 

and literacy practices of disciplines have frequently not been made explicit for teachers and 

students. 

Rather than considering knowledge as an object of study, Maton argues that education tends 

to reduce knowledge to knowing. In physics education (and science education in general) this 

tends to be grounded in cognitive models of student understanding that foreground the 

varying ways students conceptualise and frame the knowledge of physics (see diSessa 2006 

for an overview of research of this kind). These models have been important in drawing 

attention to the fact that students do not come into physics (or indeed any discipline) with a 

clean slate, but rather maintain intuitive conceptions of much of the phenomena physics aims 

to teach more technically. However by focussing primarily on the student as the framer of 

knowledge, this tradition of research often obscures how knowledge is structured in the 

discipline in general (see Maton 2014, Georgiou et al. 2014). These models thus fail to 

formulate the underlying principles that underpin why a discipline is how it is, how it can 

progress and what forms of knowledge need to be taught to students for them to be successful. 

If we wish to develop a discipline-sensitive pedagogy these structuring principles of 

knowledge must be understood. We need a way of answering, for example, why it is that the 

type of writing in English literature is not appropriate in science, or why the methods of 

investigation of science are not utilised in English. Moreover, if we wish this pedagogy to 

                                                           
2
 See however Hood on appraisal in scientific writing (e.g. 2010). 
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inform the reading students do to learn the knowledge and the writing they produce to show 

they have this knowledge, we need a method for understanding this knowledge in terms of 

the language and other resources used in each discipline. That is, we need to understand 

knowledge semiotically. 

This thesis takes a step toward interpreting knowledge in physics from a semiotic perspective. 

It considers how physics is organised to develop a coherent and multifaceted knowledge 

structure, and how this knowledge is construed and distributed across language and other 

semiotic resources such as mathematics and image. Not only does this give insights into how 

physics works for the sake of physics education, but given physics’ nominally special 

position within the academic world, it allows an understanding of one of the ‘poles’ in the 

cline from the science and humanities. It thus broadens our understanding of academic 

knowledge in general. 

 

1.2 Mathematics, images and language in physics 

To investigate how physics manages its apparently special knowledge structure, this thesis 

examines its discourse in classrooms, in textbooks and in student work. What is immediately 

apparent when considering this discourse is the large emphasis on mathematics and images 

throughout almost all contexts. Figure 1.1 shows a typical page from a university physics 

textbook that involves three images and numerous equations permeating the page. 
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Figure 1.1 Mathematics, images and language in a university textbook 

(Young and Freedman 2012: 1288) 
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This page is typical of physics texts throughout the data set used for this study (described in 

Section 2.5 of Chapter 2 and Appendix B). Indeed Parodi (2012), in his quantitative study of 

textbooks across multiple academic disciplines, suggests that, like other sciences, physics 

regularly utilises images such as graphs and diagrams to present information, and, of the 

basic sciences, it is by far the most reliant on mathematics. Based on these findings, Parodi 

suggests that physics is the most predominately graphic-mathematical of the disciplines he 

studied. This amplifies the characterisation of physics by Biglan as the ‘hardest’ of the pure 

sciences and by Kolb as the most abstract of the non-applied disciplines, and reinforces its 

exceptional form. Parodi’s study is backed up by Lemke’s (1998) survey of articles in the 

prestigious physics research journal Physical Review Letters. Within this corpus, Lemke 

found that on average, around four images and equations occurred per page (2.7 equations, 

1.2 images); this is significantly higher than the rate of images and equations in the 

corresponding journal for the biological, earth and space sciences, Science, or for medicine, 

Bulletin of the New York Academy of Medicine (Lemke 1998: 89).
3
 Images and equations are 

thus clearly a regular feature of the discourse of physics.  

In order to understand the discourse of physics, then, it is necessary to comprehend the full 

range of resources involved – language, mathematics and images, as well as gesture, 

demonstration apparatus, various symbolic formalisms and numerous others. This thesis 

moves in this direction by considering mathematics and images in relation to language as 

crucial components of the discourse and knowledge of physics. It thus offers a more 

exhaustive analysis of physics texts than would be possible if our gaze was restricted to 

language. In addition, a detailed study of each resource makes it possible to understand why 

each is used. The pervasiveness of each resource throughout physics across a broad range of 

levels in schooling and in research suggests that each plays a crucial role in developing the 

knowledge of physics. By taking each resource seriously and considering their roles in detail, 

we can begin to understand their functionality for organising this knowledge. More 

specifically, we can investigate whether the particularly predominant use of mathematics and 

images plays any role in the distinctive knowledge structure that physics maintains. 

                                                           
3
 In the case of Science, the non-linguistic resources used were primarily images, with only a handful of articles 

using equations. As such, Science contained slightly more images per page than Physical Review Letters. This is 

echoed by Parodi’s study, that found chemistry and biotechnology involved more images than physics (but 

fewer equations). However, importantly, both studies found that images are nonetheless still standard elements 

of physics discourse, alongside equations. 



7 
 

Before we can investigate these resources, however, we need a common method for 

understanding them. Beginning with scientific language, we note that it has a long history of 

research in linguistics. For example in the tradition of Systemic Functional Linguistics and 

the agnate approach of Social Semiotics, there have been several decades of research into its 

peculiarities (e.g. Huddleston et al. 1968, Lemke 1990, Halliday and Martin 1993, Martin and 

Veel 1998, Halliday 2004). These studies and the educational programs developed from them 

have been based upon elaborate and wide ranging descriptions of language developed by 

Halliday, Martin and colleagues (consolidated in Halliday and Greaves 2008 (phonology), 

Halliday and Matthiessen 2014 (lexicogrammar), Martin 1992a (discourse semantics), Martin 

and Rose 2008 (register and genre)). These descriptions were not necessarily developed with 

science or education explicitly in mind (though some did arise in relation to these 

considerations), but were built with an eye to the range of variation across different contexts 

and the extrinsic functionality that language serves. They have proven immensely useful to 

many researchers who wish to study the language of science in addition to its other 

applications. These descriptions are being continually developed and improved as further 

avenues of research come to light. 

In recent decades, descriptions drawing on SFL have been developed for modalities of 

communication alongside language. Kress and van Leeuwen’s (1990) and O’Toole’s (1994) 

grammars of images, and O’Halloran’s (1996, 2005) description of mathematics have 

widened our gaze and allowed us to understand these resources as meaning-making systems 

in their own right (see Chapter 2 for a detailed discussion). These and related descriptions 

have fostered the growing field of multimodality and have encouraged scholars to take 

seriously the roles of extra-linguistic semiotic resources. Some of these descriptions, however, 

require further development in order to achieve the comprehensiveness and robustness of the 

descriptions of English mentioned above. For example, O’Halloran’s description of 

mathematics has yet to be fully systematised and the range of variation in mathematical 

symbolism has not yet been fully mapped. In addition for images, there still remain 

significant areas yet to be fully developed, including a more thorough exploration of abstract 

graphs and the highly complex diagrams used in the sciences to explain physical phenomena. 

Before we can understand the functionality of these resources and their role in building the 

knowledge in physics, we need an understanding of what they can and cannot do in various 

contexts. This requires thorough descriptions to map the choices available and the typical text 

patterns in each context. 
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One challenge we need to face is that the various models of semiotic resources produced to 

date (whether focused on language, image, mathematics, gesture, film, sound or space), rarely 

begin from the same starting point. Each description tends to make its own assumptions and 

develops according to its own criteria. Moreover, with the exception of linguistic studies, 

descriptions tend to have little explicit discussion of the principles guiding them. If we are 

looking to compare the functionality of various resources and determine why it is they are 

used, this becomes an issue. With different starting points and different methods of 

development, it is often difficult to determine whether similarities or differences apparent in 

resources are due to the intrinsic nature of these resources or simply due to the informing 

theory and descriptive methodology. Just as the classification of species in biology or the 

explanation of phenomena in physics needs to be based on systematic principles, so does the 

description and comparison of resources in semiotics. By way of facing this challenge, this 

thesis proposes principles for description based on systemic functional theory that provide a 

basis for systematic and thorough descriptions of semiotic resources. These principles offer a 

method through which descriptions can bring out each resource’s intrinsic and unique 

functionality, rather than assuming categories developed from other resources. They will also 

underpin a detailed description of mathematical symbolism that explores the range of 

variation and the detailed potential available across contexts. And they will be used to 

generate larger theoretical architecture that allows a comparison of the broader functions of 

resources. 

This thesis thus incorporates two components. The first is descriptive: it develops a 

comprehensive formalised description of mathematical symbolism both at the micro level of 

its grammar and at the broader level of text patterns arising from its interaction with language. 

In doing so, it illustrates a set of descriptive principles that can be applied widely as a shared 

basis for semiotic description. In addition, it considers both images and mathematics in terms 

of the meanings they can make and their unique functionality in the discourse of physics. The 

second component of the thesis uses these descriptions to investigate the knowledge structure 

of physics. It shows how physics manages to build abstract theory while maintaining its grasp 

on the empirical world, and highlights the crucial role that language, mathematics and images 

each play in this. The thesis thus investigates the knowledge of physics by examining the 

semiotic resources that organise it. 
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1.3 Organisation of the thesis 

This thesis is organised into six chapters. Following the foundations chapter (Chapter 2), 

Chapters 3-5 progressively build the descriptive component of the thesis by steadily widening 

its gaze. Chapter 3 begins with a monomodal study of mathematics; Chapter 4 considers 

mathematics and language together; and Chapter 5 brings images into the picture to contrast 

their role with that of mathematics and language. As the descriptive lens broadens, the thesis 

increasingly focuses on the overall knowledge of physics and the role each resource plays in 

its structure. The final chapter brings each component of the thesis together to underscore the 

interplay between the descriptive and knowledge-building foci, as well as their implications 

for the broader field of semiotics and our understanding of knowledge. 

Chapter 2: Theoretical and Descriptive Foundations 

Chapter 2 establishes the foundations for both the descriptive and knowledge-structure 

components of the thesis. In doing so, it introduces the two main theoretical frameworks that 

inform the study: Systemic Functional Linguistics (SFL) (or more broadly, Systemic 

Functional Semiotics) and Legitimation Code Theory (LCT). First, it presents the theoretical 

architecture of SFL and its conception of scientific language in terms of the concept of field. 

Second, it introduces a tradition within the sociology of education that has taken knowledge 

seriously as an object of study in its own right, and will consider how it has positioned 

physics. This tradition emanates from the work of Bernstein (e.g. 1999), and has been 

developed by the increasingly influential Legitimation Code Theory (LCT). Third, it will 

introduce the Systemic Functional descriptions of image and mathematics that form the 

platform upon which the descriptions in this thesis build. And finally, it offers a detailed 

account of some of the issues that have arisen in trying to systematise these descriptions and 

presents the descriptive principles and methodology that underpin the thesis. The main point 

of this section will be that many of large-scale theoretical categories often assumed in 

semiotic description can be derived from a single dimension of Systemic Functional theory, 

known as axis. This orientation accordingly grounds a methodology for testing whether these 

categories are indeed appropriate for any particular semiotic resource. 

Chapter 3: A Grammar of Mathematical Symbolism 

Based on the principles spelled out in Chapter 2, Chapter 3 builds a systematised and 

comprehensive grammar of mathematical symbolism. This grammar shows that mathematics 
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is based on a series of recursive systems where each choice can be repeated indefinitely. Its 

corresponding structural realisation is thus also indefinitely iterative. This produces a 

significantly different system to that commonly seen in language, or indeed in any semiotic 

resource so far described. In particular, it will show that there are two different hierarchies of 

units involved (known as ranks and nestings) that are based on different types of structure. 

Further, it will illustrate that the broad functional divisions in the grammar (known as 

metafunctions) are different from those in language (which are generally posited as common 

across all semiosis). By building a grammar based on the principles described in Chapter 2, 

the description is able to show the unique functionality of mathematics in comparison to 

language and other semiotic resources. 

Chapter 4: Genres of Mathematics and Language 

Chapter 4 considers the broader text patterns associated with mathematical symbolism and 

language, known as genre. It will show that, in general terms, physics involves two types of 

mathematical genre. These genres have their own systems and their own structures. However 

like the categories in mathematics’ grammar these genres can be repeated indefinitely to 

produce large and complex texts. Each genre will be shown to strongly coordinate with 

different components of the grammar, meaning that the text patterns are largely predictable 

from the texts’ overall purpose. The model of genre is based on the same descriptive 

principles as those of the grammar (given in Chapter 3), which will also be used to show the 

usefulness of a generalised model of genre that unifies both primarily mathematical and 

primarily linguistic genres. Finally, the chapter uses the models of grammar and genre to 

trace the development of mathematics from primary (elementary) school, through high 

(secondary) school and into university physics. The development will be interpreted in terms 

of the Legitimation Code Theory dimension of Semantics (introduced in Chapter 2) and used 

to explore mathematics role in building the knowledge-structure of physics. 

Chapter 5: Images and the Knowledge Structure of Physics 

Chapter 5 turns its focus to images to examine the distinct meanings they make for physics in 

comparison to mathematics and language. It does this by considering each resource from the 

perspective of SFL’s concept of field. This allows the discussion of images and mathematics 

to relate to the model of scientific language in SFL that has typically been framed in terms of 

field (discussed in Chapter 2). In doing so, it shows the unique affordances of each resource 

for construing knowledge and offers an explanation for why each is used in physics. When 
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framed in terms of Legitimation Code Theory’s dimension of Semantics, the chapter will 

show the crucial role each resource plays in allowing physics to develop generalised theory 

and keep this theory in touch with the empirical world.  

Chapter 6: Multisemiosis and the Knowledge Structure of Physics 

Chapter 6 consolidates the thesis by bringing together the threads that have arisen in the 

previous chapters. First, it compares and contrasts the affordances of mathematics, language 

and image, before discussing a model of physics’ knowledge as a whole. Second, it reflects 

on the ramifications of the model of mathematics developed in this thesis for claims about the 

pervasiveness of metafunctions across all semiosis. In addition, it considers the possibility of 

the SFL concepts of genre and register as a method for unifying the diverse semiotic 

resources that occur in discourse. And finally, it looks ahead to argue for the development of 

a general semiotic typology that can make explicit the parameters of variation and contexts of 

use of various semiotic resources that permeate human culture. 

The underlying motivation for this thesis is educational. However the models developed are 

not tied exclusively to educational contexts. Rather, they have been developed with an eye to 

broader appliability, and, most importantly, with theoretical integrity and descriptive rigour in 

mind. By maintaining these, we can step further toward a generalised theory of semiosis that 

is appliable across both education and the wider world. 
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CHAPTER 2 

Theoretical and Descriptive Foundations 

 

Physics knowledge is multifaceted. It involves extensive and complex relations between 

innumerable elements that describe, explain and predict the physical world. Similarly, the 

discourse that organises this knowledge is equally as multifaceted. It involves language, 

mathematics, image, nuclear symbolism, gesture, demonstration apparatus and many other 

semiotic resources that each bring their own functionality and their own particular construal 

of knowledge. To understand how physics organises its knowledge, it is important to 

understand the roles these various semiotic resources play. For physics, the most ubiquitous 

of these resources are language, mathematics and image (Parodi 2012). They are consistently 

used throughout all fields of physics, they occur across much of schooling and research, and 

they have done so for many centuries (see O’Halloran 2005: Chapter 2; and papers by 

Copernicus, Galileo, Kepler, Newton, Planck, Einstein and others in Hawking 2002, 2011). 

With such consistent use it is fair to suggest that each resource plays a distinct and crucial 

role in building physics’ knowledge. 

Understanding physics’ knowledge, therefore, involves seeing the functionalities of each 

semiotic resource and relating this functionality to the knowledge of physics in general. In 

this thesis, the functionality of mathematics, language and image for organising physics 

knowledge will be viewed through the complementary perspectives of Systemic Functional 

Linguistics (SFL) and Legitimation Code Theory (LCT). One the one hand, Systemic 

Functional Linguistics offers a theory and descriptive apparatus for viewing the intricate 

knowledge-building potential of each semiotic resource, as well as their actual use in text. On 

the other hand, Legitimation Code Theory presents a theorisation of the structure of physics 

knowledge itself by making manifest the organising principles that underpin this knowledge 

and its discourse. The two approaches offer complementary perspectives of the intricate 

functionality of physics discourse and the semiotic resources that constitute it, as well as the 

broader structuring principles of physics knowledge that coordinate it. 

Systemic Functional Linguistics has had a long-standing concern for scientific discourse. Its 

encounters with scientific language date back to Huddleston et al.’s (1968) grammar of 

sentences and clauses in scientific English and have provided one stimulus for Halliday’s 
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seminal work on grammatical metaphor (as consolidated in Halliday 2004). In recent decades, 

SFL’s focus on science has been intertwined with its deep concern with education and 

literacy, resulting in a series of books and papers probing the nature of scientific discourse 

across various educational contexts (e.g. Halliday and Martin 1993, Martin and Veel 1998, 

Rose et al. 1992, Christie and Martin 1997 – often in interaction with the agnate social 

semiotic perspective, e.g. Lemke 1990). In connection with its educational focus, SFL has 

also often interacted with sociology developing out of the work of Basil Bernstein (e.g. 

Christie 1999). The most illuminating connection for understanding the nature of physics is 

the recent work on the structure of knowledge (e.g. Christie and Martin 2007, Christie and 

Maton 2011) During this more recent phase of interaction, varying forms of knowledge 

across academic disciplines have been explored through close collaboration between SFL and 

LCT (Maton 2014). During this phase, LCT and SFL have developed in creative tension with 

each other, with each approach pushing the others’ explanatory framework and expanding 

their horizons (for the history of the interaction between SFL and this tradition of sociology 

known as code theory see Maton and Doran in press 2017, Maton et al. 2015, Martin 2011b). 

At the same time as SFL’s focus on science developed and its interaction with code theory 

entered a new phase, it became actively involved in the development of multimodal discourse 

analysis. The concern with multimodality nudged linguistics to look outside language and 

consider a broad range of meaning-making resources. The field began in earnest with the 

seminal studies of images by Kress and van Leeuwen (1990) and O’Toole (1994), followed 

quickly by descriptions of various other resources such as physical action (Martinec 1998, 

2000, 2001), sound (van Leeuwen 1999) and, importantly for this thesis, mathematical 

symbolism (O’Halloran 1996). This tradition has highlighted the importance of non-linguistic 

semiotic resources for organising meaning both in everyday life and in specialised academic 

discourse, including science. Physics in particular has been shown to be heavily reliant on 

mathematics and images for its discourse, potentially more so than most academic disciplines 

(Parodi 2012). If we wish to understand how physics organises its knowledge, therefore, it is 

important that we develop a rich appreciation of the role mathematics and images play 

alongside language in its discourse. In pursuing this goal, the developments in multimodality 

over the last three decades have prepared a solid foundation upon which this thesis can stand. 

This chapter establishes the foundations that underpin this thesis. First, it reviews the relevant 

theoretical architecture of SFL and considers scientific discourse from the perspective of 

SFL’s concept of field. Second, it explores how knowledge is structured across academic 
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disciplines, and introduces the tradition of code theory that has culminated in Legitimation 

Code Theory. Third, it introduces developments in multimodality that inform this study and 

raises some key issues concerning the description and comparison of non-linguistic semiotic 

resources. Finally, it outlines the data set used for this thesis.  

 

2.1 Systemic Functional Linguistics 

Systemic Functional Linguistics is a multifaceted theory of language with a large 

interconnected architecture. It considers language in its social context and describes it in 

terms of both the functions it plays and the possible options available in any situation. It is by 

far the most elaborated component of the broader field of Systemic Functional Semiotics and 

is the basis for most of the theoretical principles and descriptive mechanics in Systemic 

Functional theory. As will be argued in Section 2.4, most Systemic Functional descriptions of 

semiotic resources other than language have taken their lead from the work on English by 

Halliday and his colleagues, beginning in the 1960s. It is thus important to understand the 

architecture of language from the perspective of Systemic Functional Linguistics in order to 

understand how accounts of non-linguistic semiotic resources have developed. This section 

will focus on four main dimensions of language in SFL: stratification, metafunction, axis and 

rank, before considering scientific language from the perspective of field in Section 2.2. Each 

of these dimensions is crucial to the model of mathematics developed in Chapters 3 and 4 and 

the role it plays alongside language and image in Chapter 5. 

 

2.1.1 Stratification 

SFL views language as a stratified system arranged on a cline of abstraction (e.g. Halliday 

1985). Under this model, language contains a content plane which is divided into the strata of 

discourse semantics and lexicogrammar. Lexicogrammar is concerned with meanings made 

within a clause, whereas discourse semantics is concerned with meanings made through 

entire texts (beyond the clause). In addition, language contains an expression plane that 

realises the meanings made by discourse semantics and lexicogrammar, of either phonology 

(for spoken language) or graphology (for written language) (following Martin’s 1992a 

model). Every instance of language necessarily makes a choice from all strata, and every 

stratum contributes its own meanings. The result of this is that choices made in discourse 
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semantics are realised by choices in lexicogrammar, and choices in lexicogrammar are 

realised in phonology/graphology. The stratal organisation of language is typically 

represented through cotangential circles, as shown in Figure 2.1.  

 

 

 

Figure 2.1 Strata of language (following Martin 1992a) 

 

The way we use language changes depending on the context. In order to account for this, SFL 

proposes further strata above language. In Martin’s model (1999), two further strata, register 

and genre, coordinate choices in language. Genre is the highest stratum and describes a text’s 

global social purpose (Rose and Martin 2012). Genres tend to unfold in distinct stages and 

coordinate the meanings at the stratum below, termed register. Register encompasses three 

variables: field, tenor and mode (Martin 1992a). Field is concerned with what is happening in 

a social activity, tenor is concerned with the relationship between participants and mode is 
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concerned with the role language plays in the situation (Martin and Rose 2008). Figure 2.2 

shows register and genre in relation to the strata of language. 

 

 

Figure 2.2 Strata of language and context (following Martin 1999) 

Crucially for this thesis, genre and register are not strata of language. Rather, they are 

semiotic systems in their own right that are expressed through language. In Hjelmslev’s 

(1943) terms, genre and register are connotative semiotics, while language is a denotative 

semiotic (Martin 1992a). As connotative semiotics, genre and register have language as their 

expression plane, whereas language, as a denotative semiotic, has its own expression plane – 

phonology or graphology. This connotative/denotative distinction is important for Chapters 4 

and 5 below where mathematics, language and image are viewed from the perspective of a 

shared system of genre (Chapter 4, involving mathematical symbolism and language only) 

and field within register (Chapter 5, which deals with mathematical symbolism, language and 



17 

 

image). By positing a semiotic system above language (genre and register), the regular uses 

of mathematics, language and image in physics can be explained. 

 

2.1.2 Metafunction 

SFL proposes that language makes three broad types of meaning: ideational, interpersonal 

and textual meanings (Halliday 1969, 1973, 1985). Ideational meanings construe the outside 

world, interpersonal meanings organise our social relationships and textual meanings 

organise language in terms of information flow and salience. Ideational meanings are further 

distinguished into two subtypes: experiential meanings that construe our experience of the 

outside world and logical meanings that specify general iterative relations between different 

elements of this experience. These different types of meanings are referred to as 

metafunctions and are reflected in different components of the grammatical systems of 

languages. 

The metafunctional distribution of meanings in language coordinates with the tripartite 

distinction of register into field, tenor and mode (Halliday 1970a, 1978b). Field, as the 

variable concerned with the ‘content’ of what is being said, tends to coordinate ideational 

meanings. Tenor, as the variable concerned with the social relations encoded through 

language, tends to coordinate interpersonal meanings. Mode, as concerned with the role of 

language in any situation, tends to coordinate textual meanings. This relation between register 

and the metafunctions of language relates extrinsic functionality to intrinsic functionality of 

language: it suggests that language is as it is because of the functions it has evolved to do 

(Martin 1991). This metafunction-register hook-up is often configured as in Figure 2.3. 
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Figure 2.3 Metafunctional relations between language, register and genre. 

 

Halliday’s notion of metafunction arises from his work on the grammatical organisation of 

language where each component is made up of relatively discrete bundles of systems. As 

Halliday (1978b: 187) puts it, ‘within one component there is a high degree of 

interdependence and mutual constraint, whereas between components there is very little: each 

one is relatively independent of the others.’ In English, this is shown through the relatively 

independent systems of MOOD (interpersonal), THEME (textual) and TRANSITIVITY (ideational) 

(Halliday 1967a, b, 1968, 1969, Martin 1983). Across these systems in general terms, a 

choice in one system can be combined with any choice in the others. In Section 2.4.4 this 

systemic independence will be used to show how metafunctions can be derived from another 

theoretical category termed axis. 
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In addition to their paradigmatic independence, Halliday (1979) suggests that metafunctions 

also tend to be realised by particular types of structure. Ideational meanings tend to be 

realised by discrete particulate structures wherein each constituent function is clearly 

distinguished from the others and plays a complementary role in the structure. For example 

the TRANSITIVITY system involves Participants such as Actor, Goal etc, where the boundaries 

between each are relatively clear-cut and each tends to occur only once (Halliday and 

Matthiessen 2014). Interpersonal meanings, on the other hand, are realised by prosodic 

structures that cut across units. For example negation in English clauses is realised across the 

Finite and any subsequent indefinite deixis in other elements, e.g. I won’t eat any more (c.f. 

the positive I will eat more) (Martin 2008). Finally, textual meanings are realised by periodic 

structures whereby text is ordered into peaks and troughs of informational salience. At clause 

rank, this is represented in English through the thematic prominence at the beginning of the 

clause (labelled Theme) and the intonationally marked newness prominence typically placed 

at the end of the clause (labelled New) (Halliday and Matthiessen 2014). Figure 2.4 

represents these three types of structure for the same clause. 

 

 

Figure 2.4. Types of structure for each metafunction 

For this thesis, the most pertinent structures are particulate structures. These are associated 

with the ideational and field-based meanings developed in physics, and form the core of the 

grammatical organisation of mathematics (see Chapter 3). For the discussion it is important to 
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further distinguish two subtypes of particulate structure, which Halliday (1965) calls 

multivariate and univariate structures. These types of structure are associated with the two 

components of the ideational metafunction – multivariate with the experiential component, 

univariate with the logical component (Halliday 1979). 

Multivariate structures involve multiple variables that normally occur only once (Halliday 

1965). For example, the transitivity structure of the English clause We saw him is a 

multivariate structure involving three functions in sequence Senser (We) ^ Process (saw) ^ 

Phenomenon (him) (Halliday and Matthiessen 2014).
4
 In contrast, univariate structures 

involve a single variable which can be repeated (often indefinitely). For example, the clause 

complex The Cronulla Sharks bought Michael Ennis this year and next year they have James 

Maloney involves two clauses (underlined) linked by and (realising paratactic extension, 

Halliday and Matthiessen 2014). In principle, any number of elements could be related in this 

way, creating very complex sequences. Univariate structures can either be paratactic, where 

each element is of the same status (such as the clause complex above), or hypotactic where 

one element is dependent on another. An example of a hypotactic structure is the clause 

complex after buying Ennis, Cronulla bought Maloney. In this complex, the clause buying 

Ennis is dependent on Cronulla bought Maloney in the sense that it cannot occur on its own. 

It is common in systemic functional descriptions for multiple structures to be mapped onto 

the same unit. For example, the English clause in Figure 2.4 above has structures arising from 

TRANSITIVITY (Actor^Process^Goal), MOOD (Subject^Finite^Predicator^Complement), 

THEME (Theme^Rheme) and INFORMATION (Given^New). An example involving both 

multivariate and univariate structures arises in the English nominal group. In this case a 

hypotatic univariate structure arising from the logical metafunction is mapped onto a 

multivariate structure from the experiential metafunction. Considered hypotactically, the 

nominal group the second Saints album, for example, can be seen simply as a series of words 

modifying the head album. Following the conventions in Halliday and Matthiessen 2014, 

album is labelled α and is modified by Saints which is labelled β, which is further modified 

by second (γ) and finally by the (δ), giving a structure δ (the) ^ γ (second) ^ β (Saints) ^ α 

(album). Complementing this, each word can be viewed multivariately as performing a 

distinct function in a set sequence and with specific possibilities for variation. Under this 

analysis, the is a Deictic, second is a Numerative, Saints is a Classifier and album is a Thing 

                                                           
4
 Sequence is indicated by a caret ^ . Non-sequenced functions are indicated by a dot  
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(Halliday and Matthiessen 2014). This analysis attends to the strict ordering of the words; in 

English these functions do not occur in a sequence such as second the album Saints. Both the 

multivariate and univariate analyses bring out different features of the variation that is 

possible for each element and so provides a rich interpretation of the English nominal group. 

For this example the full multifunctional analysis is shown in Table 2.1. 

 

 the second Saints album 

univariate δ γ β α 

multivariate Deictic Numerative Classifier Thing 

 

Table 2.1 Univariate and multivariate analysis of an English nominal group 

In addition to multivariate and univariate structures, Martin (1992a) offers a third type of 

particulate structure to account for discourse relations. These structures account, for example, 

for relations deriving from taxonomies where multiple elements are mutually dependent on 

each other. Martin’s example considers the relation between robot and model in the short text: 

 I’m not pleased with this robot, but that model looks fine. (1992a: 24) 

In this example, model is a superordinate of robot (that is, robot is a type of model in this 

case). This sets up a cohesive tie in the text, whereby model and robot enter into the same 

taxonomy and thus hold some relation in the text. This relation is of mutual interdependence; 

model is as dependent on robot for its role in helping the text cohere as robot is on model. 

Following Lemke 1985, Martin terms these relations covariate structures. 

The multivariate, univariate and covariate distinction is important for the grammatical 

description of mathematics in the following chapter. Each type of structure is associated with 

a particular bundle of systems in the grammar, and will be used in developing a 

metafunctional model for mathematics. Figure 2.5 presents the different types of structure 

relevant for this thesis (following Martin 1992a, covariate and univariate structures are 

grouped together as interdependency structures). 
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Figure 2.5 Types of structure and their coordinating metafunction 

 

2.1.3 Rank and nesting 

Within strata, SFL proposes a second set of levels known as ranks. Ranks form a 

constituency hierarchy whereby every rank is made up of one or more units of the rank below 

(Halliday 1963). In English phonology for example, there are four ranks: the tone group is the 

highest and contains one or more feet, which in turn contain one or more syllables, which in 

turn contain one or more phonemes (Halliday 1963, 1994). At the higher stratum of 

lexicogrammar, English also has four ranks. Clauses contain groups (or phrases), which 

contain words, which contain morphemes (Halliday and Matthiessen 2014). A rank scale’s 

constituency organisation is what distinguishes it from strata. As mentioned above, strata are 

related in terms of abstraction; this means that a unit on a higher stratum is not 

compositionally related to a unit in another stratum (e.g. a morpheme in the grammar does 

not consist of phonemes in phonology, Hockett 1961). In contrast, by definition, the units in a 

rank scale will necessarily be related through a part-whole relation (Halliday 1961).
5
 In 

Systemic Functional modelling, every rank is obligatory; this means, for example, that a 

clause must be interpreted as consisting of one or more groups and phrases, which consist in 

turn of one or more words, which consist in turn of one or more morphemes – even where the 

entire clause is a single morpheme long (e.g. Help!). The clause The second Saints album 

contains thirteen tracks can thus be divided into three functions: Carrier (The second Saints 

album), Process (contains) and Attribute (thirteen tracks). Each of these functions are 

                                                           
5
 It is worthwhile noting in addition that not all languages (nor semiotic resources) will necessarily have the 

same rank scale, or indeed a rank scale at all. Halliday (1992a), for example argues against the need for a rank 

of phoneme in Beijing Mandarin. Similarly, for mathematics O’Halloran (2005) argues for four ranks, while for 

images, Kress and van Leeuwen (1990) do not use a rank scale. In this sense, any particular rank scale is not a 

part of the SFL theory of language (or semiosis), but rather a descriptive tool. 
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realised by a single unit at the rank of group/phrase. The Carrier is realised by a nominal 

group (The second Saints album), the Process is realised by a verbal group (contains) and the 

Attribute is realised by another nominal group (thirteen tracks). Each of these groups is in 

turn realised by their own functions, and then by words until the final rank of morpheme. The 

justification for analysing each instance of language at all ranks is to account for the possible 

variation that may occur at all ranks. Although the minimal clause Help! consists of only one 

group with one word with one morpheme, it could be expanded to include multiple groups 

(e.g. you please help me!), with each group potentially containing multiple words (Will you 

both pretty please help us all!) with many words potentially containing multiple morphemes 

(Won’t you both be helping us all!). By proposing a rank scale, the possible variation at each 

tier can be described. 

In addition to the obligatory ranks, a process of ‘rankshift’ may occur, where a unit of the 

same or higher rank may realise a function at a given rank. This may involve additional 

compositional depth for the analysis of a particular unit. For example, it is relatively common 

for a clause to occur within a nominal group: in the clause we went through the experimental 

evidence that led Rutherford to come up with his model, the nominal group the experimental 

evidence that led Rutherford to come up with his model, includes a rankshifted clause, that 

left Rutherford to come up with his model, functioning as a Qualifier. Clauses (or any unit) 

that are rankshifted are more commonly referred in current SFL literature as embedded 

(Halliday and Matthiessen 2014). 

The rank scale is organised through a constituency hierarchy involving multivariate structures 

(Huddleston 1965). However in addition to the rank scale, univariate structures can also 

produce additional depth in a process commonly known as layering or nesting (Halliday 

1965). This arises from the fact that (in English) every rank can iterate: clauses can become 

clause complexes as we’ve seen above, groups and phrases can form group/phrase complexes 

(e.g. the hydrogen atom and the helium ion), words can form word complexes (hydrogen and 

helium) and morphemes can form morpheme complexes (pre- and post-discovery). Through 

this iterative structure, complexes of units can form single elements within larger complexes, 

producing further depth. Halliday (1965) illustrates this through the nominal group complex 

soup, a main dish, sweet or cheese and biscuits, and coffee. This complex sets up a univariate 

structure with four immediate elements: (1) soup, (2) a main dish, (3) sweet or cheese and 

biscuits and (4) coffee. The third element, however, itself contains two elements: (1) sweet 

and (2) cheese and biscuits, with cheese and biscuits in turn containing two elements: (1) 
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cheese and (2) biscuits. This sets up three layers arising from its univariate structure, shown 

in Table 2.2. 

soup, a main dish, sweet or cheese and biscuits, and coffee 

 

layer 1 soup a main dish sweet or cheese and biscuits coffee 

layer 2   sweet cheese and biscuits  

layer 3    cheese biscuits  

 

Table 2.2 Nesting in soup, a main dish, sweet or cheese and biscuits and coffee 

 

The nesting in this case all occurs at the same multivariate rank; the entire complex would 

function as a whole within a clause (e.g. The menu today is soup, a main dish, sweet or 

cheese and biscuits, and coffee).
6
 As discussed in the previous section, univariate structures 

(and the nesting that arises from them) are associated with the logical metafunction. This 

metafunction, including its univariate structure, nesting and the recursive systems (see below), 

is particularly important for the discussion of mathematics in Chapter 3, and so we will return 

to it periodically as it becomes relevant. 

 

2.1.4 Axis: System and structure 

 

Underpinning each of the dimensions of rank, strata and metafunction is the complementarity 

of system and structure, which together form the dimension of axis. Systems (constituting the 

paradigmatic axis) arrange descriptive features in opposition to each other. Options in 

systems are realised by particular configurations in structure (the syntagmatic axis). For 

example, in the English system of MOOD, the paradigmatic axis opposes indicative clauses to 

imperative clauses. To distinguish these two types, indicative clauses are realised on the 

syntagmatic axis by having a Subject and a Finite, while an imperative typically has neither. 

                                                           
6
 Though not all iterative structures will necessarily be complexes of whole units. English agency, for example, 

iterates a combination of a Participant (and Agent) and an extra causative verbal group in the Process, rather 

than a full clause or a single group, such as those underlined in The President allowed his advisors to pressure 

the Speaker to give up her opposition.  
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To formalise these relations, SFL uses system networks. A simplified MOOD network is 

outlined in Figure 2.6. 

  

Figure 2.6 Simplified system network of MOOD  

(adapted from Halliday and Matthiessen 2014: 162) 

Read from left to right, the entry condition for the system is a major clause. The downward 

slanting arrow ↘ indicates a realisation statement (relating system to structure). In this case, a 

major clause is realised by the insertion of a Predicator (indicated by +). Predicator is a 

function label and is written with an initial capital, MOOD is a system label and is written in 

small caps and major clause is a feature (class) label and is written entirely in lower case. The 

square bracket indicates that if major clause is chosen, then either indicative or imperative 

must be chosen. These options are known as features and are written entirely in lower case. If 

indicative is chosen, then a Subject and a Finite is inserted, and the choice of declarative or 

interrogative arises. If declarative, then the Subject is sequenced before the Finite (sequence 

is indicated by ^); if interrogative, then the Finite comes before the Subject. Movement from 

the left to the right of the network is a movement in delicacy. Systems further to the right are 

more delicate options of those to the left. 

Figure 2.6 above illustrates a series of ‘or’ brackets (e.g. for the system with the options 

indicative vs imperative). In addition to these, system networks can also show simultaneous 

systems through curly ‘and’ brackets. This allows multiple systems to cross-classify an entry 

condition (another feature or rank) and is the mechanism through which Systemic Functional 

Linguistics models multiple strands of independent variation. Figure 2.7 illustrates a 

simplified account of the three simultaneous systems of MOOD, TRANSITIVITY and THEME. 
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Figure 2.7 Simultaneous systems of MOOD, TRANSITIVITY and THEME 

This network says that for all major clauses, a choice must be made from each of the systems 

of MOOD, THEME and TRANSITIVITY.  

Systems may also be recursive, whereby a choice in one feature can be repeated indefinitely. 

Figure 2.8 exemplifies this for a simplified network of English clause complexing. 
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Figure 2.8 Recursive system in a simplified network of English clause complexing. 

(adapted from Halliday and Matthiessen 2014: 438) 

This system indicates that if complex is chosen, a choice must be made from each of the 

systems of TAXIS, LOGICO-SEMANTIC TYPE and RECURSION. Within the RECURSION system the 

wiring that emanates from the feature continue indicates that if this feature is chosen another 

choice from each of these systems is needed. This offers an indefinitely recursive loop with 

any number of choices available until the feature “―” (glossed as stop) is chosen. As this 

system is indefinitely recursive, it is realised by an indefinitely iterative structure (not 

shown); i.e. the recursive system produces a univariate structure. As mentioned above, 

recursive systems such as this and the univariate structures that realise them are associated 

with the logical metafunction. We will see in Chapters 3 and 4 that recursive systems 

permeate the description of mathematics, and so form an important component of this thesis. 

The full set of conventions for system networks is outlined in Appendix A. 

The systems and structures constituting the dimension of axis play a pivotal role in the 

architecture of Systemic Functional descriptions. Martin (2013) argues that the paradigmatic 

and syntagmatic axes are the theoretical primitives of Systemic Functional theory from which 

metafunction, rank and strata can be derived. This is a powerful claim and will be explored in 
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more detail in Section 2.4.4 in relation to descriptive issues in the broader field of Systemic 

Functional Semiotics. 

Now, however, we will turn to the Systemic Functional view of scientific language. The 

concepts of strata, rank, axis and metafunction will be drawn on throughout this discussion 

and in subsequent chapters and so will be elaborated on where relevant. 

 

2.2 Science as viewed from the Systemic Functional dimension of field 

The discourse of science and the knowledge it construes is far removed from that of everyday 

life. Science uses distinct technical terminology, particular linguistic patterns and specific 

text types that are rarely seen outside academic or vocational discourse. Halliday (1989), for 

example, outlines a number of features of scientific English that distinguish it from everyday 

language. These include interlocking definitions of terminology (where multiple technical 

terms are dependent on each other for their meaning), delicate technical taxonomies (where 

technicality is elaborated through classification or composition), a high density of lexical 

items per ranking clause (where a large degree of information is consolidated in a relatively 

short space), and high use of grammatical metaphor (whereby, for example, processes and 

qualities are repacked as things). In addition, Lemke (1982, 1990) highlights that scientific 

discourse puts to use a large set of intricate semantic relations in organising its technical 

knowledge (known as thematic patterns). Lemke’s (and other’s) studies exploring thematic 

patterns (across language and other semiotic resources, e.g. Tang et al. 2011, Fredlund, 2015, 

Fredlund et al. 2012, 2015) unveil both the complexity of meaning underpinning scientific 

knowledge and the difficulty in reconciling apprentices’ understanding of this knowledge 

with that of the broader field. 

Physics knowledge, as conveyed through language, mathematics and images, is central to this 

thesis. As one way into this knowledge, physics will be viewed from the SFL’s register 

variable field. Field is a component of the stratum of register (see Section 2.1.1 above) and is 

concerned with the nature of the social activity realised through language. In understanding 

physics, a view from field can be roughly interpreted as offering a semiotic perspective on its 

content. To interpret this, Martin considers field as ‘a set of activity sequences oriented to 

some global institutional purposes, alongside the taxonomies involved in these sequences 

(organised by both classification and composition)’ (2006b: 1). Studies of science using field 
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have shown that the its language involves deep taxonomies and intricate activity sequences 

that encode very precise and field-specific meanings (Wignell et al. 1989, Martin 1993a, 

Rose 1998, Rose et al. 1992, Hao 2015). 

Taxonomies of science are either compositional, arranging terms into part-whole relations, or 

classificational, arranging terms into type-subtype relations. An example of a relatively small 

compositional taxonomy in physics is the structure of a hydrogen atom. The atom is 

composed of an electron and a proton, with the proton composed of two up quarks and one 

down quark, represented in  2.9. 

 

 2.9 Compositional taxonomy of a hydrogen atom 

In addition to compositional taxonomies, physics is constituted by a range of classification 

taxonomies. For example, the above compositional taxonomy already indicates two types of 

quark – up quarks and down quarks. These quarks are positioned in a much larger 

classification taxonomy of elementary particles, shown in  2.10. 
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 2.10 Classification taxonomy of elementary particles 

Taxonomies are concerned with the relations between individual entities in field and are 

complemented by activity sequences that account for a field’s unfolding events. Activity 

sequences can be divided into relations of expectancy and implication. Expectancy sequences 

indicate activities in which events typically follow one another in a particular sequence. In 

language, the expectancy links between events in these activities are normally realised as 
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temporal relations. In science, expectancy sequences are often associated with procedural 

texts that detail the steps of an experiment (Martin and Rose 2008, Rose et al. 1992). Text 

2.1(a), for example, shows a university physics lecture recounting Rutherford’s experiment 

that led to the discovery of the nucleus. In doing so, it builds an expectancy sequence of the 

events involved in the experiment (segments of the text not relevant to the activity sequence 

of the experiment have been left out). 

So 1911 Rutherford comes along and does a scattering experiment….  He took some atoms, 

ah in fact what he did was he had a very thin gold foil which he knew if he hit it with alpha 

particles, whatever alpha particles are, hit it with particle radiation, … the film was thin 

enough that the particles would go through, but some would be reflected but basically they 

would go through. He constructs the experiment so that he has a narrow beam of these 

particles [alpha particles]. And then he basically detects what comes up here… they did the 

experiment and found a number of things is that many many of them went through, and then 

the occasional one bounced back at them… these people analysed it in a sophisticated way… 

Text 2.1 (a) Procedural recount of the Rutherford experiment 

 

The expectancy sequence constituting Rutherford’s activity is outlined below:
7
 

So 1911 Rutherford comes along 

^ 

(Rutherford) does a scattering experiment 

=  

what (Rutherford) did was (Rutherford) had a very thing gold foil which (Rutherford) knew if 

(Rutherford) hit it with alpha particles, whatever alpha particles are, hit it with particle 

radiation, … the film was thin enough that the particles would go through, but some would be 

reflected but basically they would go through. 

^ 

(Rutherford) constructs the experiment so that he has a narrow beam of these particles 

^ 

(Rutherford) basically detects what comes up here 

= 

                                                           
7
 A caret ^ between lines indicates that the line below temporally follows the line above, = indicates that they 

occur at the same time. In this example, the two instances of  = involve a general activity encapsulating a 

number of more specific ones (does a scattering experiment; did the experiment). 
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(Rutherford)  did the experiment 

^ 

and (Rutherford) found a number of things is that many many of them went through and the 

occasional one bounced back at him 

^   

these people (Rutherford + others) analysed it in a sophisticated way 

Text 2.1(b) Expectancy sequence from the Rutherford experiment procedural recount 

 

This sequence shows activities involving Rutherford unfolding temporally. Each event in this 

expectancy sequence follows the previous one, but this sequence does not arise from logical 

necessity in the field. Although this particular sequence recounts a past sequence and so is 

necessarily fixed, at the time of its original unfolding (or in any recreation of the sequence in 

a lab), other events could have occurred (see Martin 1992a: 537 ff. who follows Barthes 1977: 

101-104 in this regard). In science, the possibility for expectancy sequences to be diverted 

along another path opens the way for variations in experimental procedures (whether through 

error or design). It is this possibility for differing sequencing that distinguishes expectancy 

sequences from the other type of activity sequence, known as implication sequences. 

Implication sequences detail the unfolding of events in a field whose sequence arises through 

logical necessity (Martin 1992a: 323). These sequences tend to underpin scientific 

explanations where one event implies the next. Text 2.2(a) shows an example of an 

implication sequence being jointly developed by a high school teacher and a class. The 

sequence outlines what classical physics predicts should happen to an electron in an atom.
8
 

 

Teacher:  This electron by definition is accelerating. Why is it? Who can tell me, Tony? 

Student: It changes direction 

Teacher:  Right, it is continually changing direction, moving in a circular motion and 

circular motion is a type of acceleration. What did Maxwell say that 

accelerating charges do? They emit? 

                                                           
8
 Note that this is an implication sequence within the field of classical physics. The fact that it does not 

accurately predict what happens in the atom, (i.e. that the implication sequence here does not match what is 

observed), is what makes the classical model wrong. It doesn’t change the fact that this is an implication 

sequence specified by the field. 
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Student: Emit EMR 

Teacher: They emit EMR. So this electron should be emitting radiation. And if it was 

emitting radiation, it is emitting energy. And if it is emitting energy it must 

be losing energy, by law of conservation of energy, and if it is losing energy, 

sooner or later it has to slow down. And if it slows down, John, what’s it 

going to do? 

Student: Ah, crash into the nucleus? 

Teacher: It’ll crash.  

Text 2.2 (a) Classical physics’ model of an electron in an atom 

 

Again we can reconstitute the text to show the implication sequence being realised. This time, 

the implication sequence considers the electron. Each line is ordered in terms of the causal 

sequence among events established in the text, where the following line is a logical result of 

the previous. 

(The electron) changes direction 

 ^ 

 This electron by definition is accelerating 

 ^ 

 This electron should be emitting radiation 

 ^ 

 (The electron) is emitting energy 

 ^ 

 (The electron) must be losing energy, by law of conservation of energy 

 ^ 

 sooner or later (the electron) has to slow down 

 ^ 

 (The electron will) crash into the nucleus 

Text 2.2 (b) Implication sequence of classical physics’ model of an electron in an atom 
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Under the classical theory being explained, the relation between these events is not one of 

expectancy where one would probabilistically follow the other, but rather of implication, 

where one necessarily follows the other. Implication sequences such as this are the primary 

means of explaining natural phenomena in science (Martin 1993a), and, naturally, are often 

built through explanation genres (Unsworth 1997, 2001, Rose 1998, Veel 1997, Martin and 

Rose 2008). In contrast, as shown above, scientific expectancy sequences occur in procedures 

and procedural recounts associated with experiment, while taxonomies of both classification 

and composition are built through various types of report (Rose et al. 1992, Veel 1997, 

Martin and Rose 2008). 

In addition to these field dimensions, Zhao (2012) highlights an important relation between 

technical meanings in physics that has not yet been adequately captured in the model of field 

to this point. This relation is between technical terms such as force and acceleration, or 

kinetic energy and speed. Terms such as these are regularly coupled in physics discourse, and 

they hold a close connection that students must learn as they move through schooling. For 

example, the greater the speed of an object (assuming everything else remains the same), the 

greater the kinetic energy. Relations such as this are taught in physics schooling and are 

necessary to understand the intricate network of meanings associated with the field, but they 

do not display composition or classification relations (force is not a type nor a part of 

acceleration), nor do they necessarily involve events that can be related in sequences. To 

account for these terms, Zhao proposes a new type of taxonomic relation that she terms 

causation. In the following chapters, we will see that terms in these relations are often related 

mathematically. Due to this, Chapter 5 will argue that rather than including these under 

taxonomic relations, their mathematical nature requires a reinterpretation of the field 

dimension of implication. 

The research into science from an SFL perspective has shown that scientific language 

organises a large set of deep taxonomies of composition and classification, and a series of 

intricate activities involving entities organised in these taxonomies and related in successive 

events to one another either through implication or expectancy. Technical meanings in 

science therefore involve large swathes of meaning deriving from these intersecting 

dimensions, with any instances of technicality in the field engaging in indefinitely large 

numbers of relations with other elements of the field. In the next section, this 

interconnectivity will be explored in relation to the ongoing dialogue between SFL and a 

branch of sociology known as code theory that is concerned with the structuring of 
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knowledge. As part of this, it will introduce the modern incarnation of code theory which 

forms the other theoretical foundation of this thesis, Legitimation Code Theory. 

 

2.3 Code theory and the structuring of knowledge 

Every academic discipline has its own ways of organising its knowledge. Disciplines have 

their own objects of study, their own methods of discovery, their own bases for 

argumentation and their own principles for judgement. Through its studies of registerial 

variation, Systemic Functional Linguistics has revealed many of the differing ways of 

meaning of various academic disciplines across the sciences, humanities and vocational 

education (much of which is collected in various volumes such as Halliday and Martin 1993, 

Christie and Martin 1997, Martin and Veel 1998, Christie 1999, Martin and Wodak 2003, 

Halliday 2004, O’Halloran 2005, Coffin 2006, Rose et al. 1992, Christie and Martin 2007, 

Wignell 2007, Feez et al. 2008, Christie and Maton 2011, Martin 2012 and a range of 

material arising from the Write it Right Project, see refs in Martin 1993b)
9
. Along the way, 

SFL has had regular dialogue with a branch of sociology deriving from Basil Bernstein, 

known as code theory. This dialogue has been long standing and has taken many forms, but 

in recent decades it has focused on the nature of knowledge (for the history of dialogue 

between SFL and code theory see Martin 2011b, Maton et al. 2015, Maton and Doran in 

press 2017). Where SFL has focused on the way knowledge is construed through language 

and other semiotic resources, code theory has offered a theorisation of knowledge itself. This 

theorisation has allowed SFL to understand the principles that underpin the different ways of 

meaning across academic disciplines, while SFL’s descriptive apparatus has offered code 

sociology a way in to understanding the discursive resources at stake in any particular form 

of knowledge. 

In theorising knowledge, Bernstein (1999) makes a distinction between horizontal and 

vertical discourse. Horizontal discourse is associated with everyday, common sense 

knowledge and tends to be ‘oral, local, context dependent and specific, tacit, multi-layered 

and contradictory across but not within contexts’ (1999: 159). In contrast, vertical discourse 

is associated with academic knowledge and takes the form of ‘a coherent, explicit, and 

systematically principled structure, hierarchically organised, as in the sciences, or it takes the 

                                                           
9
 Many of the Write it Right resources focusing on science, history, English, art, geography and mathematics 

can be found at www.educationalsemiotics.wordpress.com 
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form of a series of specialised languages with specialised modes of interrogation and 

specialised criteria for the production and circulation of texts, as in the social sciences and 

humanities’ (1999: 159). 

His description of the difference between the sciences on the one hand and the social sciences 

and humanities on the other leads Bernstein to make a further distinction within vertical 

discourse. This distinction is between hierarchical knowledge structures, most typically 

associated with the sciences, and horizontal knowledge structures, associated with the social 

sciences and the humanities. Hierarchical knowledge structures (the natural sciences) attempt 

to ‘create very general propositions and theories, which integrate knowledge at lower levels, 

and in this way show underlying uniformities across an expanding range of apparently 

different phenomena’ (1999: 162). To symbolise hierarchical knowledge structures, Bernstein 

uses an image of a triangle, where the generalised and integrated theories at the peak 

encompass a wide range of phenomena at the base. 

 

 

 2.11 Hierarchical knowledge structures (Bernstein 1999: 162) 

 

Horizontal knowledge structures (the humanities and social sciences), on the other hand, 

‘consist of a series of specialised languages with specialised modes of interrogation and 

criteria for the construction and circulation of texts’ (1999: 162). To represent these, 

Bernstein uses a series of Ls: 

 2.12 Horizontal knowledge structure (Bernstein 1999: 162) 

As mentioned above, the natural sciences are said to typify hierarchical knowledge structures. 

In problematising this, Muller (2007) argues that hierarchical knowledge structures (and thus 
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the sciences) develop through integration - toward ever more integrative and general 

propositions that subsume multiple statements. This capacity he terms strong verticality. In 

addition, hierarchical knowledge structures involve strong grammaticality whereby they are 

able to stably generate unambiguous empirical correlates. In these terms, hierarchical 

knowledge structures are said to progress both integratively through expanding explanatory 

sophistication and empirically through worldly corroboration (2007: 71). 

Of all the hierarchical knowledge structures, physics is the one most regularly positioned as 

the ‘archetypical’ example (e.g. Bernstein 1999, Maton and Muller 2007, Martin 2007a, 

O’Halloran 2007a, Martin 2011b). This classification of physics makes potentially fruitful 

suggestions as to how it organises its knowledge and forms of discourse it takes. How (and 

indeed whether) physics achieves this knowledge structure, however, has yet to be thoroughly 

explored.  

Complementing the field-based perspective given in the previous section, this thesis will also 

investigate physics in relation this code theory perspective of knowledge structure. In order to 

do this, however, we need tools that allow for fine-grained analyses of its discourse. 

Bernstein’s formulation provides an eye-opening first step, but it does not detail how we ‘see’ 

this in data. As Maton (2014: 109) argues, categorising a discipline such as physics in terms 

of knowledge structure is a good tool to think with, but it does not offer analytical principles 

to explore how this arises in the discourse itself. To understand the organising principles of 

physics knowledge, the next section will introduce the incarnation of code theory known as 

Legitimation Code Theory. 

 

2.3.1 Legitimation Code Theory 

Legitimation Code Theory (LCT) offers a series of tools for analysing the varying forms 

taken by knowledge and other social practices across the disciplinary spectrum and in broader 

society. It is being increasingly used in cooperation with SFL to analyse knowledge practices, 

allowing each theory to speak back to the other and catalysing theoretical innovation (see 

Maton et al. 2015, Maton and Doran in press 2017). LCT is made up of five dimensions 

(Maton 2014), of which two are particularly important for understanding physics’ knowledge 

structure: Specialisation and Semantics. 
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Specialisation concerns what the basis for knowledge is in a discipline. It distinguishes 

between epistemic relations (ER) between knowledge and its object of study, and social 

relations (SR) between knowledge and its authors or subject (Maton 2014: 29). Disciplines 

with stronger epistemic relations (ER+) are said to emphasise specialised knowledge of 

specific objects of study, while those with weaker epistemic relations (ER-) downplay these 

skills. In contrast, those with stronger social relations (SR+) emphasise the attributes of actors 

in the field as the basis of achievement (such as having a cultivated gaze from prolonged 

immersion in art), while those with weaker social relations (SR-) downplay the attributes of 

actors. Epistemic and social relations are independently variable and form gradable continua. 

This means that a given discipline can have any strength of ER or SR at the same time. As a 

means of categorising in general terms the possible combinations of stronger and weaker 

epistemic and social relations, Maton (2014) presents four distinct codes: 

 ‘knowledge codes (ER+, SR–), where possession of specialised knowledge of specific 

objects of study is emphasised as the basis of achievement, and the attributes of actors 

are downplayed; 

 knower codes (ER–, SR+), where specialised knowledge and objects are less 

significant and instead the attributes of actors are emphasised as measures of 

achievement, whether these are viewed as born (e.g. ‘natural talent’), cultivated (e.g. 

artistic gaze of ‘taste’) or socially based (e.g. the notion of gendered gaze in feminist 

standpoint theory); 

 élite codes (ER+, SR+), where legitimacy is based on both possessing specialist 

knowledge and being the right kind of knower (here, ‘élite’ refers not to social 

exclusivity but rather to possessing both legitimate knowledge and legitimate 

dispositions); and 

 relativist codes (ER–, SR–), where legitimacy is determined by neither specialist 

knowledge nor knower attributes – a kind of ‚‘anything goes’.’ (Maton 2014: 30-31) 

 

In terms of this categorisation, physics is classified as a knowledge code that emphasises 

epistemic relations (Maton 2014). As part of this, it maintains a cohesive integrated 

theoretical organisation and develops through accurately describing and explaining the 
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physical world.
10

 It is physics’ relatively strong epistemic relations, therefore, that underpin 

its hierarchical knowledge structure (Maton 2014: 92). By fostering strong relations with its 

object of study, physics can develop ever more integrative theory that encompasses an 

expanding range of empirical phenomena. This, however, brings us back to our previous 

question: how do we ‘see’ this in physics’ discourse?  For this, we will use a second 

dimension of LCT known as Semantics. 

Semantics is concerned with how meanings relate to their context and to each other. It 

involves two variables, semantic gravity (SG) and semantic density (SD). Semantic gravity 

conceptualises the degree to which meanings depend on their context (Maton 2014: 110). If 

semantic gravity is stronger (SG+), meanings are more dependent on their context; if it is 

weaker (SG–), meanings are less dependent on their context. For example in physics, a 

specific numerical measurement of an instance of a physical phenomenon (say a force), 

displays significantly stronger semantic gravity than a generalised theoretical principle 

holding across multiple contexts (e.g. a generalised equation     ). Semantic density, on 

the other hand, refers to the degree of condensation of meaning in an item (be it in a word, a 

symbol, a concept or a theory etc.). Stronger semantic density (SD+) indicates more meaning 

condensed; weaker semantic density (SD–) indicates less meaning condensed. For example in 

physics the technical term star holds relatively strong semantic density as it contains a large 

degree of specialised meanings for the field: a star is a spherical mass of plasma held together 

by gravity, it involves multiple types that are classified by their effective temperature, 

absolute magnitude, luminosity and various other features, and the light from many of these 

stars arises from the release of energy during the thermonuclear fusion of hydrogen into 

helium. In contrast, in everyday language, star is rarely used in relation to these meanings, 

and rather refers to a shiny point of light in the night sky. For this reason, in everyday 

discourse, the term star has relatively weak semantic density. Maton and Doran (in press 

2016a) argue that the key marker of semantic density is the degree of relationality a meaning 

has. This involves the degree to which a meaning is multiply interconnected with other 

meanings in a field. In the case of the term star in physics, it resonates out to a vast 

interconnected network of meanings in the field and so involves a large degree of relations 

for those trained in the field. The everyday meaning of star on the other hand does not 

resonate out to such a large degree and so involves fewer relations and thus has weaker 

                                                           
10

 In terms of the more delicate 4K model of LCT (Maton 2014: 175), this means that it likely also offers both 

relatively strong ontic relations to its physical object of study, and relatively strong discursive relations between 

its various theoretical components. 
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semantic density.
11

 Semantic gravity and semantic density have been usefully applied to 

physics education to show the large constellations of meaning regularly at play in classrooms 

(Lindstrøm 2010), and the regular shifts from generalised theoretical meanings to specific 

empirical examples that students must negotiate when learning physics (Georgiou et al. 2014, 

Conana 2015, Georgiou 2015). 

Like the epistemic and social relations of Specialisation, semantic density and semantic 

gravity are independently variable, allowing any strength of one to be combined with the 

other. This is crucial for understanding the knowledge of physics. For physics to develop a 

hierarchical knowledge structure that integrates knowledge across a range of empirical 

phenomena, it needs a mechanism for generating and displaying relatively strong semantic 

density. It must be able to cohesively relate a series of concepts associated with the physical 

world, so as to avoid segmental and ad hoc explanations. At the same time, in order to keep 

its theory in touch with empirical data, it must involve a large range of semantic gravity. In 

the first place, physics needs a tool to make empirical predictions from its theoretical 

descriptions; it needs a way to generate stronger semantic gravity (empirical predictions) 

from weaker semantic gravity (its theory) (a movement known as gravitation, Maton 2014: 

129). But it also needs to be able to move the other way; it needs a method for allowing 

empirical data to speak back to and develop the theory. In terms of semantic gravity, it also 

needs a mechanism for moving from stronger semantic gravity to weaker semantic gravity 

(what Maton’s terms levitation). 

Thus in order to develop a hierarchical knowledge structure, physics must be able to generate 

new theoretical meanings and link these meanings with its empirical object of study. In terms 

of Semantics, it needs to display strengthening semantic density (condensation) and the 

ability to move between stronger and weaker semantic gravity. In Chapters 4 and 5, we will 

see that each of mathematics, language and images are crucial to these movements. No 

semiotic resource by itself allows physics to develop its hierarchical knowledge structure, but 

together they do. 

                                                           
11

 The everyday star may, however, hold astrological or spiritual significance. Such meanings display 

axiological condensation (Maton 2014: 153) more associated with values and dispositions than those of 

empirical description and explanation (known as epistemological condensation). As physics knowledge is 

ostensibly less concerned with organising moral values and personal dispositions and more with empirical 

prediction and explanation, this thesis will not consider axiological meanings, only epistemological meanings. 

Thus any reference to semantic density or semantic gravity in this thesis refers to epistemological semantic 

density and epistemological semantic gravity. 
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This brings us to the final major component underpinning this thesis. Physics knowledge is 

expressed not just through language, but through mathematics, images and many other 

resources. In order to see the knowledge being construed, we must have an understanding of 

the meanings made by each of these resources. In the last few decades, major advances have 

been made in understanding how non-linguistic semiotic resources such as mathematics and 

images organise their meanings. These developments form the third platform upon which 

much of this thesis stands, and so it is to these that we will now turn. 

 

2.4 Physics as a multisemiotic discipline 

Physics knowledge is construed through spoken and written language, mathematics, image, 

gesture, demonstration apparatus and a number of other semiotic resources. If we understand 

only the language used in physics, we are only seeing a partial picture. Indeed Parodi’s (2012) 

study of non-linguistic resources used in six academic disciplines (chemistry, biotechnology, 

physics, history, linguistics, literature) suggests that physics is a discipline which more than 

most relies on non-linguistic semiotic resources. This study found that in a university 

textbook corpus, physics had by far the highest use of mathematical formulae and also a 

relatively high use of graphs and diagrams compared to the other disciplines under study. If 

mathematics, images and the other resources are consistently used in various contexts in 

conjunction with language, it is fair to say that they likely do something that complements 

language. Indeed Airey and Linder (2009) argue that the particular constellation of semiotic 

resources in the physics discourse is one of the crucial factors organising its specific 

disciplinary ways of knowing. 

To understand the roles various semiotic resources play alongside language throughout 

academic discourse and in the broader culture, the past few decades have seen the 

establishment and rapid growth of the field of multimodality. Multimodality was sparked by 

the seminal accounts of images by Kress and van Leeuwen (1990) and O’Toole (1994) and 

aims to understand the multitude of meaning-making resources available in human culture 

(for an introduction to multimodality, see Machin 2007 and Bateman 2014a, for overviews of 

the field see Jewitt 2010, Norris 2015). Multimodal research quickly moved into the area of 

mathematical and scientific discourse through the studies of mathematics and images by 

O’Halloran (1996, 2005) and Lemke (1998, 2003), both of which strongly influence this 
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thesis. The development of multimodality paralleled a similar development within physics 

education research. This tradition has highlighted that non-linguistic semiotic resources play 

an integral role in organizing the knowledge of physics and that educational interventions 

must therefore take these into account when building pedagogy (see e.g. van Heuvelen 1991, 

Åberg-Bengtsson and Ottosson 2006, Fredlund et al. 2012, 2015). 

As mathematics and images are the most salient and pervasive non-linguistic resources used 

in physics, this thesis will focus in particular on these resources. To this end, the following 

sections will introduce the models of image and mathematics that this thesis builds on. First, 

it will discuss the role of images in organising scientific meanings, focusing in particular on 

Kress and van Leeuwen’s (1990/1996/2006) image grammar, and the different types of 

meanings images make in science (from Lemke 1998) (Section 2.4.1).  Second, it will present 

O’Halloran’s grammar of mathematics, which forms the direct antecedent and primary 

influence on the mathematical description developed in Chapter 3 (Section 2.4.2). Third, it 

will discuss the different ways of reading multimodal discourse based on Bateman’s (2008) 

distinction between text flow and page flow (Section 2.4.3). Fourth, it will discuss some 

general descriptive issues in multimodality in relation to abstracting theoretical categories 

such as metafunction, rank and strata and further develop the axial principles on which the 

descriptions in this thesis are based (see Section 2.4.4). Finally, it will introduce the 

multisemiotic corpus underpinning the thesis (2.5). Each of the models introduced in this 

section will be further elaborated in Chapters 3-5 as they become relevant. 

 

2.4.1 Images in physics 

Images permeate all areas of physics. They are used through schooling from primary school 

to university, and form a regular component of research publications. Physics education 

research has convincingly shown that images play a crucial role in organising the knowledge 

of physics, but that despite this they do not necessarily offer uncomplicated access to this 

knowledge for students (e.g. Åberg-Bengtsson and Ottosson 2006, Fredlund et al. 2012, 2015, 

Fredlund et al. 2014, Meltzer 2005, Rosengrant et al. 2007, 2009, van Heuvelen and Zou 

2001). Significantly for their utility, Lemke suggests that the meanings made by images are 

of a different order to those construed in language. Under this model, images more readily 

construe ‘topological’ meanings of ‘degree, quantity, gradation, continuous change, 

continuous co-variation, non-integer ratios, varying proportionality, complex topological 



43 

 

relations of relative nearness or connectedness, or non-linear relationships and dynamical 

emergence’ in contrast to language’s ‘typological’ meanings of categorical difference (at 

least ideationally) (1998: 87). The topological meanings in images arise from the spatial 

arrangement of elements on a page (or screen), which allows indefinitely small gradations to 

be presented and relative size/distance to be construed as meaning. 

This topological meaning also allows images to construe relations between multiple elements 

across multiple dimensions in a single snapshot (these relations will be termed arrays in 

Chapter 5). In particular, it gives rise to graphs that, as O’Halloran (2005: 137) highlights, are 

central for conveying patterns of variation by arranging data points and lines along multiple 

axes. These graphs often intersect with various types of diagram to present a large range of 

meanings in a relatively small stretch of discourse. To understand the role images play in 

physics, Chapter 5 will interpret them in terms of the Systemic Functional dimension of field. 

This interpretation in turn requires a model that can interface with SFL’s conception of field. 

The model of images that most easily does this is Kress and van Leeuwen’s (2006) grammar 

of images. 

Unlike SFL models of language, Kress and van Leeuwen do not present a stratal model that 

distinguishes clearly between grammar, discourse semantics or any other strata, nor do they 

suggest a rank scale (c.f. O’Toole 1994 who presents a rank scale, see Zhao 2010 for 

discussion). They do, however, adopt a metafunctional approach to images, dividing their 

systems into ideational, interpersonal and textual systems. The ideational component of Kress 

and van Leeuwen’s grammar will be the main avenue through which Chapter 5 will view 

field, and so it will be introduced here. 

The broadest ideational distinction in Kress and van Leeuwen’s grammar is between narrative 

and conceptual images. Narrative images show unfolding actions or events, or some sort of 

dynamic change. Conceptual images, on the other hand, relate participants through their class, 

composition or symbolic meaning. The criterial element of a narrative image is the presence 

of a Vector (2006: 59). Vectors indicate some sort of movement or direction and often 

emanate from an Actor (which usually indicates the direction of motion of the Actor).  2.13 

(a), from a senior high school textbook, illustrates a narrative image such as this with the 

plane functioning as the Actor (highlighted in red in 2.14 (b)) and the arrow functioning as 

the Vector (in yellow in 2.14 (b)). 
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 2.13 (a) Narrative image (Wiecek et al. 2005: 179) 

 

 2.13 (b) Analysed narrative image (Actor in red, Vector in yellow) 

(Wiecek et al. 2005: 179) 

  

Images with only an Actor and a Vector are known as non-transactional images. In addition 

to these elements, images may include another participant known as a Goal - to which the 

Vector is directed. Narrative images that include both an Actor and a Goal are known as 

transactional images.  2.14 (a), from a junior high school textbook, illustrates a transactional 

image with the golf ball functioning as the Goal (highlighted in green in 2.14 (b)), the golf 

club functioning as the Actor (red) and the arrow once more functioning as the Vector 

(yellow). 
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 2.14 (a) Transactional narrative image. (Mau 1999: 13) 

 

 

 2.14 (b) Analysed transactional narrative image. 

(Actor in red, Vector in yellow, Goal in green)  

(Mau 1999: 13) 
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Narrative images such as these are important in physics for realising activity sequences 

(further discussed in Chapter 5). Conceptual images on the other hand tend to organise 

taxonomic relations. The two types of conceptual image most important for this study are 

known as classificatory and analytical images (the third type, symbolic images, are less 

prevalent in construing the technical knowledge of physics and so will not be reviewed here). 

Classificatory images arrange participants in terms of type-subtype relations. They include 

two types of participants, Subordinates (sub-types) and Superordinates (types). These images 

do not appear as often in physics as narrative and analytical images, but still perform an 

important function presenting the classification taxonomies of physics.  2.15 (a) illustrates a 

classificatory image of types of matter from a high school textbook. The Superordinate is on 

top (highlighted in brown in  2.15 (b)), and the Subordinates are at the bottom (highlighted in 

brown). 

 

 2.15 (a) Classificatory image. (Warren 2000: 155) 
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 2.15 (b) Analysed classificatory image 

(Superordinate in brown, Subordinates in orange) 

 (Warren 2000: 155) 

The second types of conceptual image, analytical images, also display taxonomic relations, 

but of composition rather than classification. They present part-whole relations between 

entities and in doing so show the internal make up of physical things. The whole is known as 

the Carrier, with each constituent part called a Possessive Attribute.  2.16 (a) shows an 

analytical image of the Bohr model of the hydrogen atom drawn on a whiteboard in a high 

school classroom. The entire image is the Carrier (in light blue in 2.16 (b)), to which each 

line (orbital) and the inner circle (nucleus) are the Possessive Attributes (in purple). 
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 2.16 (a) Analytical image. 
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 2.16 (b) Analysed analytical image.  

(Carrier in light blue, Possessive Attributes in purple) 

 

In Chapter 5, we will see that much of the power of images comes from the fact that they can 

display multiple structures at once. In a single image, part-whole and classification relations 

can be combined with narrative images and graphs. 

In Kress and van Leeuwen’s model, graphs are classified as a particular type of analytical 

image, where the points on the graph indicate Possessive Attributes of the particular 

dimensions of the graph. For example, in  2.17 below, each point on the two green lines 

indicates a particular measurement (the Possessive Attribute) of both   (the vertical axis, 

glossed as kinetic energy) and v (the horizontal axis, glossed as velocity) (the Carriers). 

However in addition, Kress and van Leeuwen describe line graphs such as this as also being 

‘quasi-vectorial’ and having a ‘quasi-narrative structure’ (2006: 102). This is because the 

lines appear to show dynamic change from the left to the right of the graph. This creates 

indeterminacy between analytical and narrative readings of graphs.  
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O’Halloran (1996, 2005, see also Guo 2004) illustrates that one of the functions of graphs is 

to abstract away from raw data to show generalised patterns. For example in 2.17, the curves 

on the graph (shown in green) are not presented as corresponding to any particular numerical 

measurements. Rather, they show a generalised pattern relating the two variables,   (kinetic 

energy on the vertical axis) and v (velocity on the horizontal axis). This abstraction plays an 

important role in the knowledge of physics, allowing generalised theories to be developed 

from raw empirical data. In Chapter 5, we will return to the nature of graphs and interpret this 

possibility for generalisation from the perspective of field, which will also allow us to 

understand the significant relationship between the meanings made in mathematics and those 

made by graphs. 

 

 

 2.17 Graph in a university textbook. (Young and Freedman 2012: 1247) 
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Extending Systemic Functional theory and description to images significantly broadens the 

horizon of SFL text analysis. It allows language and image to be discussed in comparable 

terms, and thus offers an insight into each resource’s affordances and uses. For this thesis, 

Kress and van Leeuwen’s grammar of images gives a model that can be readily interpreted in 

terms of the register variable field, and thus understood in terms of the knowledge images 

construe in physics. Chapter 5 will bring together such a field-based view of images with the 

field-based model of scientific language (see Section 2.2 above) and a field-based 

interpretation of mathematics. 

As  2.17 above shows, images are regularly coupled with mathematics in physics. In order to 

understand how mathematics organises its meanings, we need a thorough description built on 

comparable terms to that of language and image. Chapters 3 and 4 are devoted to developing 

such a description, which extends and enhances a model developed by O’Halloran (2005). 

O’Halloran’s model will be introduced now. 

 

2.4.2 Mathematics in physics 

As Parodi’s (2012) study of academic disciplines shows, mathematics permeates physics. As 

for images, mathematics holds its own functionality and organises the knowledge of physics 

in its own ways. Lemke (2003) argues that one of the broader functions of mathematics is to 

mediate between the typological meanings of language and the topological meanings of 

images (in particular graphs). Individual mathematical symbols encode typological meanings 

associated with categorical and qualitative distinctions in language. For example F (glossed 

as force) is qualitatively and categorically distinct from another symbol E (glossed as energy). 

However when symbols are placed within mathematical formulae, the interdependencies 

between symbols give rise to patterns of covariation. These patterns offer variation by degree 

(topological meaning) that can be plotted onto graphs. In this way, mathematics sits between 

images and language, facing each way and allowing their meanings to be reconciled. Chapter 

3 will detail the mathematical interdependencies that construe covariation, while Chapter 5 

will discuss how these are interpreted in graphs. 

This function arises from the grammatical organisation of mathematics. As O’Halloran (1996, 

2005) shows, mathematics’ grammar varies significantly from that of language and of image. 

O’Halloran’s model is the most elaborated Systemic Functional description of mathematics to 
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date and is the main foundation on which the grammar in Chapter 3 builds. It offers a range 

of insights into the possible variation and functionality of mathematics that underpin the 

model developed in this thesis. For reasons of space, we cannot recapitulate her entire 

grammar, however this section will introduce a number of the most salient observations that 

directly influence the model developed in the following chapters. 

O’Halloran presents a language-based approach to mathematical symbolism that interprets 

the organisation of mathematics through the three metafunctions: textual, interpersonal and 

ideational (including both the experiential and logical components) (2005: 96). The 

justification for a language-based approach comes from the fact that mathematical symbolism 

evolved out of language (2005: 96; for a detailed account of the evolution of mathematical 

symbolism, see Chapter 2 of the same book). In addition to metafunctionality, O’Halloran’s 

language-based model also proposes three strata (discourse semantics, grammar and 

graphology) and four ranks in the grammar that organise the range of possible variation in 

each metafunction.  

The lowest grammatical rank is the element (O’Halloran 2005 terms this rank component, 

before renaming it element in O’Halloran 2007b), which organises the variation in individual 

symbols. Different types of elements, such as pronumerals (e.g. F, x, m etc.) and numerals 

(e.g. 2, 3 10.1 etc.), coordinate with broader grammatical and text patterns and will be 

systematised in Chapter 3. Elements form constituents of the next higher rank in 

O’Halloran’s model, expression. Expressions involve one or more elements related by 

operations such as + (addition), – (subtraction), ÷ (division) and × (multiplication). 

O’Halloran terms these relations operative processes and shows that they can be indefinitely 

iterative. Any number of elements can recur within an expression with every element linked 

by with the others through an operative process. That is, at its simplest, an expression may 

contain only a single element (e.g. m), or alternatively it may contain two (e.g.    ) or 

more, (e.g. 
 

 
 

 

 
 

 

 
). This potential for indefinite expansion and iteration of elements is a 

motif that runs through both the grammar and text patterns of mathematical symbolism and 

has significant repercussions for the overall organisation the description developed in 

Chapters 3 and 4. 

Above expressions, the next rank in O’Halloran’s grammar is the clause, which links 

expressions through items such as the equals sign =, for example     . Continuing the 

language-based approach, O’Halloran terms = a relational identifying process (2005: 106). 
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This draws a likeness with relational identifying clauses in English that regularly involves the 

verb to be, for example in Impulse is the time rate of change of momentum (Halliday and 

Matthiessen 2014). As part of this analysis, O’Halloran utilises the same structural functions 

for relational identifying clauses in mathematics as those in Halliday’s description of English. 

This produces analyses such as: 

 

(   )  =        

Token/Identified/Medium Process Value/Identifier/Range 

 

Table 2.3 O’Halloran’s analysis of an equation (2005: 106) 

This analysis gives a multivariate interpretation (see Section 2.1.2 above) where each 

expression on the left and right side of the equation hold distinct functions (e.g. the left side 

in Table 2.3 functions as the Token, while the right side functions as the Value). Although 

this analysis brings out much of the likeness between equations and relational identifying 

processes, it poses a number of problems, including how to identify which expression is, for 

example, the Token and which is the Value, and what to do when there are more than two 

expressions. This will be considered in detail in Chapter 3, leading to an alternative 

interpretation as a univariate structure. 

The final rank in O’Halloran’s grammar, termed statement, accounts for mathematical 

formulae where there are more than two expressions (and thus more than one relational 

process), such as 
 

    
 

 

    
 

 

    
. Like elements within expressions, the number of 

expressions in a statement is in principle indefinitely iterative. Despite this, the actual number 

and order of expressions in any given statement is tightly coordinated by mathematical 

symbolism’s information structure and the text patterns that arise from these. This will be 

discussed in Chapter 3 and form the basis for distinguishing different genres in Chapter 4. 

O’Halloran’s full rank scale for the grammar of mathematical symbolism is summarised in 

Table 2.4.  
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Rank Example 

statement   
 

 
 

     

         
     

clause   
 

 
 

expression 
 

 
 

element   

 

Table 2.4 Rank scale of mathematics in O’Halloran (2005) 

Each rank offers a range of variation within each metafunction. O’Halloran argues, however, 

that it is the experiential component of the ideational metafunction where the most significant 

expansions of meaning occur. As mentioned above, the rank of expression involves an 

indefinite number of elements (symbols) being related by operative processes such as +, –, ×, 

÷. This indefinite iteration allows for expressions with a large number of symbols to occur 

such as the two expressions on the left and right side of (2:1): 

(2:1)       
    

     
  

 
   

O’Halloran highlights that there is no simple linear unfolding of the operative processes (+,–, 

×, ÷ etc.). Rather, expressions regularly show a large degree of rankshift (see Section 2.1.2 

above). An example of this in (2:1) above involves      on the left hand side. This sequence 

of elements involves a multiplication relation between    and    of multiplication (though 

with the × elided as per convention).
12

 In addition, this expression in its entirety is related to 

another group      through division (shown by the vinculum ―). That is, each group of 

symbols is effectively functioning as a single symbol; expressions are rankshifted within 

another expression. The degree of rankshift is again theoretically indefinite and regularly 

                                                           
12

 We will not consider the power indicated by the superscript 
2
, here. This will be looked at in detail in the next 

chapter. 
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becomes quite deep. (2:2) shows this by indicating the rankshift in (2:2) through single red 

square brackets. Expressions within smaller square brackets are rankshifted within those with 

larger brackets. In this case there are three levels: the highest (unbracketed as this level is not 

rankshifted) and two rankshifted levels (bracketed). 

  

 (2:2)        
      

      
  

 

This possibility for indefinite iteration and rankshift allows mathematics to set up indefinitely 

complex relations between indefinitely many symbols. By doing this, many elements in the 

field of physics can be related, allowing its various components to be integrated. This 

indefinitely prolonged iteration and the integration that arises from it is a constant theme 

throughout each of the following chapters and impinges significantly on the overall model of 

mathematics developed. 

Complementing the iterative nature of operative processes, O’Halloran also highlights 

variation associated with both the textual and interpersonal metafunction. Textually, she 

suggests that the left side of the equation typically functions as Theme, and thus as the point 

of departure for the mathematical message, while the right side functions as the Rheme 

(following the description of English in Halliday 1994). Interpersonally, O’Halloran shows 

that compared to language, the meanings possible in mathematics are significantly contracted. 

Mathematics may shift speech function from its typical form of a statement to a command 

with the aid of language (e.g Let    ), however it cannot do this on its own. Further, there 

appears some variation in polarity between, for example, = glossed as equals and ≠ glossed as 

not equals, but this does not appear to regularly cut across all relations. And finally, modality 

is given in the form of digitised measures of probability, (e.g.      ) These variations, 

however, exhaust the scope of interpersonal meaning internal to the grammar of  mathematics. 

Thus in comparison to the elaborated interpersonal meanings available in English (e.g. 

Halliday and Matthiessen 2014, Martin 1992a, Martin and White 2005) the interpersonal 

metafunction in mathematics is quite narrow. Possible interpersonal and textual dimensions 

of mathematics will be further explored in Chapter 3.  



56 

 

O’Halloran’s description presents a significant step forward in our understanding of 

mathematics and the meanings it construes. As O’Halloran concedes, however, there is still 

much work to be done to develop as comprehensive a model as that offered for English. 

Taking up this challenge, this thesis, in particular Chapters 3 and 4, takes a further step. In 

particular, it presents systems for much of the variation highlighted by O’Halloran and the 

structural realisations that arise from these systems, as well as reinterpreting certain 

components of the grammar in light of these systems. The overview of O’Halloran’s 

grammar given here has been necessarily brief; however given the strong influence it has had 

on the model of mathematics developed in this thesis (in particular in Chapter 3), it will be 

revisited where relevant in the following chapters. 

 

2.4.3 Text flow and page flow 

Much of the discussion in this thesis concerns the meaning-making patterns internal to 

individual semiotic modes (mathematics, image, language); what O’Halloran (2005) terms 

intrasemiosis (as opposed to intersemiosis - the shift between representations in multiple 

semiotic resources).
13

 The intrasemiotic models developed here aim to understand the 

intrinsic functionality of each resource for organising the knowledge of physics as a step 

toward a more comprehensive picture of physics discourse. Chapter 3, for example, builds a 

grammatical model of mathematical symbolism that considers its system in isolation from 

other semiotic resources, whereas Chapter 5 views each of mathematics, language and image 

individually from the perspective of field to see the specific types of meaning they contribute 

to the overall knowledge of physics.  

The main exception to the primarily intrasemiotic descriptions developed in subsequent 

chapters is the model of genre built in Chapter 4. This model views mathematical symbolism 

and language as working in interaction to build certain recurrent patterns of text. This model 

is based upon the fact that both mathematical symbolism and written language tends to unfold 

through what Bateman (2008, 2011) terms text flow. Text flow refers to the linear unfolding 

of written text, whereby there is a relatively definite order of unfolding; in English, the text is 

read from left to right in a single line, with each line read in succession down the page (an 

                                                           
13

 The distinction between intrasemiosis and intersemiosis is similar to that made by Duval (2006) in his 

distinction between treatment – processes that happen within the same semiotic resource – and conversion – the 

representation of the same object (roughly the same ideational meaning) across multiple different semiotic 

resources in a text. 
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example is this page).
14

 Although, as O’Halloran (2005) points out, the grammatical 

organisation of mathematical symbolism is such that within expressions multiple dimensions 

are used to indicate meaning (e.g. left to right in multiplication and addition,    ,    , 

top to bottom in division, 
 

 
 or the use of subscripts or superscripts in various positions,   , 

  ), the overall unfolding of multiple mathematical statements in text strongly tends to follow 

the same text-flow pattern as that of English. 

This is in contrast to the page-flow of many images and highly multimodal text (Bateman 

2008: 176). Page-flow utilises a page’s inherent two-dimensional spatiality to make meaning, 

and in doing so, tends to confound any linear reading. In the graph given in  2.17, for 

example, the horizontal (v) and vertical (K) axes both contribute meaning such that any point 

on either green line gains meaning from both. In addition, the mathematical and linguistic 

labels distributed across the entire image all function in their own particular ways, with the 

meanings and ordering determined not by linear sequence but by a range of other relations 

(for discussion of image-text relations, see Bateman 2014a). As we will see in Chapter 5, the 

page flow used in graphs and diagrams offers the potential for a large number of different 

field-specific meanings to be presented in a single snapshot. However as Bateman (2008) 

shows, these images and the pages they are situated in can become highly complex, which 

means that primarily sequential models of genre (such as those developed in SFL for English, 

Martin and Rose 2008) need significant revision if transferred over to page-flow resources. In 

contrast, the shared text-flow of mathematical symbolism and English lends itself relatively 

nicely to a genre model that involves sequential staging (shown in Chapter 4). 

                                                           
14

 This is not to say, however, that the eye must definitely follow this pattern. Bateman (2008) is at pains to 

point out that this indeed does not always happen, even in text-flow written language. All it suggests is that the 

inherent two-dimensional spatiality of the page is not utilised to its full extent as it is in, for example, tables 

where two intersecting dimensions (rows and columns) show distinct meanings. 
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 2.17 Graph in a university textbook. (Young and Freedman 2012: 1247) 

 

Notwithstanding this, the attempt in this thesis to build a model of genre for mathematics and 

language, and to further develop O’Halloran’s grammar raises a number of descriptive issues, 

not just for the description of mathematics but for Systemic Functional Semiotics in general. 

As such, the following section will overview these issues and suggest some solutions that will 

function as principles of description for this thesis. 

 

2.4.4 Semiotic description 

With the advent of multimodal discourse analysis, there has been an explosion of research 

into and description of non-linguistic semiotic resources. This has expanded the horizons of 

text analysis and allowed a much broader view of semiosis to arise. Despite this, the intricate 
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comparison and classification of semiotic resources (what could be called semiotic typology) 

is still in its infancy. A typology that considers both the functionalities and formal features of 

various semiotic resources is vital for understanding why different semiotic resources are 

used or not used in certain circumstances (and thus for informing an appliable semiotics). In 

order to develop an adequate typology, rigorous and comprehensive descriptions of multiple 

semiotic resources need to be developed that can be compared across a number of dimensions. 

To this point, however, this endeavor has been constrained by the fact that in the Systemic 

Functional tradition, there has been little consensus in practice as to how such descriptions 

should be developed. 

A survey of the points of departure for the most prominent descriptions in the last few 

decades illustrates this lack of consensus. Kress and van Leeuwen’s (1990/1996/2006) 

description of images takes as its starting point the linguistic metafunctions: ideational, 

interpersonal and textual. They argue that the metafunctions ‘apply to all semiotic modes, and 

are not specific to speech or writing.’ (1990/2006: 42, though van Leeuwen later withdraws 

this claim for sound and music, 1999:189-91). In this assumption of metafunctionality, they 

are followed by Martinec’s (1998, 2000, 2001) description of bodily action and Painter et 

al.’s (2013) approach to images in children’s picture books. In his description of visual art, 

O’Toole (1994) also assumes metafunctionality (though with relabeling of the functional 

components); and on top of this, O’Toole additionally assumes a hierarchical rank scale (with 

four ranks). As discussed above, O’Halloran’s work on mathematical symbolism and images 

pushes one step further, assuming both metafunctionality and rank, as well as a tri-stratal 

allocation of each resource involving discourse semantics, grammar and an expression 

stratum (termed the display plane: graphics for images, and graphology and typography for 

mathematic symbolism). In contrast, van Leeuwen’s (1999) description of sound is not 

organised with respect to metafunction, rank or strata (indeed he explicitly addresses and 

rejects the possibility of metafunctions, pp. 189-191). 

In response to this lack of consensus across descriptions, discussions of the principles upon 

which description should take place and how we are to judge and compare competing 

descriptions have begun to emerge, in particular in relation to images and visual documents 

(e.g. Zhao 2010, Martin 2011a and the work of Bateman, e.g. 2008, 2011, 2014a, b). This 

discussion, however, is only at a very early stage of development and is yet to engage in a 

detailed manner with semiotic resources outside of images and visual documents. The 

relative nascence of discussion surrounding descriptive matters can be contrasted with the 
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study of language within linguistics, where the principles of description and theorising have 

been the site of considerable debate throughout the field’s entire modern history (see e.g. 

Sampson 1980, Newmeyer 1980). 

The major semiotic descriptions within the Systemic Functional tradition have so far rarely 

concerned themselves with the principles of description. Despite different assumptions and 

points of departure, the common thread (excepting van Leeuwen 1999) is that each presumes 

a theoretical category that was originally developed for language (or more specifically 

English), such as metafunction, rank and/or strata. This is problematic if we wish to build 

descriptions that bring out the specific functionality of each semiotic resource. By simply 

assuming categories, we run the risk of homogenising descriptions, making everything look 

like the first resource to be comprehensively described (i.e. English) and thus watering down 

the specific functionality of each resource. 

Notwithstanding the issue of assuming categories from English to other resources, the lack of 

consensus as to which categories to assume (metafunction, rank or strata) further emphasises 

the need for a detailed discussion of descriptive principles. For the description of language, a 

useful starting point is Halliday’s (1992b) distinction between theoretical and descriptive 

categories (see also Caffarel et al. 2004b). Theoretical categories are those that are part of the 

general linguistic theory and by definition are general to all language – e.g. ‘system’, 

‘stratum’, ‘class’, ‘function’ etc. Descriptive categories on the other hand are in principle 

language-specific, they are at a lower level of abstraction and cannot be assumed for all 

languages, such as ‘clause’, ‘preposition’, ‘Subject’, ‘material process’, ‘Theme’ etc. 

Descriptive categories are language specific instances of more theoretical categories. So, for 

example Halliday highlights that ‘while “system” itself is a theoretical category, each 

instance of a system, such as “mood”, is a descriptive category. Similarly, “option” (or 

“feature”) in a system is a theoretical category, while each particular instance of an option, 

like “indicative” or “declarative”, is descriptive.’ (1992b: 3). When it comes to broader 

semiotic theory and description, the same principles hold. Although Systemic Functional 

theory maintains a series of theoretical categories that can potentially be used to describe 

various semiotic resources, their actual applicability or form in any description must be 

justified for every system. Given these issues surrounding the transfer of categories from 

English to other resources, this thesis argues as a starting point that we cannot simply assume 

phenomena such as metafunction, rank and strata will occur for every resource. These 

categories were originally developed for English through the bundling of systems (discussed 
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below) and there has yet to be a detailed justification for their use in other resources. This is 

not to say that they won’t occur, but that for such categories to be used in the description of a 

semiotic resource, they need to be justified internal to the system being studied.  

This takes us to the crux of the issue. If we cannot assume metafunction, rank or strata what 

is the basis for constructing descriptions? Martin (2013) argues that each of these categories 

can be derived from the more fundamental theoretical primitive of axis, i.e. the interaction of 

the paradigmatic and syntagmatic axes (also less formally known as system and structure and 

formalised in system networks) (see Section 2.1.4 above). These axes are the foundational 

principles in Systemic Functional theory that evolved from Saussure (1916), Hjelmslev (1943) 

and Firth (1957, 1968). If metafunction, rank and strata can be derived from axis, a powerful 

method opens upon which the architecture of various semiotic resources can be developed 

and justified. As such, this argument is of crucial importance for this thesis. This section will 

therefore illustrate this argument by showing how each of the categories of metafunction, 

rank and strata can be derived, beginning with metafunction. 

The justification for metafunctions is based on two types of evidence: first, the relative 

paradigmatic in(ter)dependence of systems (originally developed through the bundling of 

clausal systems in English, Halliday 1967a, b, 1968, 1969, 1970b), and second, the types of 

syntagmatic structure (Halliday 1979, Martin 1983). In terms of paradigmatic systems, the 

basis for suggesting distinct functional components hinges on systems being more or less 

independent of each other. If choices in a bundle of systems are shown to be heavily 

dependent on other choices in the bundle, and this entire bundle is relatively independent of 

another bundle of systems, evidence exists for distinct functional components. In relation to 

the English clause, this plays out in the distinction between TRANSITIVITY and MOOD. 

TRANSITIVITY and MOOD are relatively independent of each other, which means that any 

choice in TRANSITIVITY has relatively free choice of MOOD, with only a few constraints. This 

is shown in Table 2.5.
15

 

 

 

                                                           
15

 As we are developing a systemic argument, Matthiessen’s (1995) description of nuclear transitivity is being 

followed here – it being the most fully developed paradigmatic account. In this description, the four least 

delicate process types are material, mental, verbal and relational. Existentials and behaviourals, considered to be 

at primary delicacy in Halliday and Matthiessen (2014), are taken in Matthiessen’s model as more delicate 

subtypes of relational and material, respectively. 
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                     MOOD 

 

TRANSITIVITY       

indicative imperative 

material She built him a house. Build him a house. 

mental It pleased the staff. Please the staff. 

relational She is a good leader. Be a good leader. 

verbal She praised the man. Praise the man. 

 

 Table 2.5. MOOD vs TRANSITIVITY in English. 

The relative independence of MOOD choices with TRANSITIVITY indicates their potential to be 

part of distinct functional components that are the basis of metafunctions. In contrast, 

comparing the relation between MOOD and MODALITY shows that the MODALITY system is 

entirely dependent on choices within the MOOD system (see discussion in Martin 2013: 52ff). 

In particular, choices in MODALITY can only be made if indicative and not imperative is 

chosen in MOOD (the asterisk * indicates that an example is not possible). 

(2:3) She may build him a house   indicative + modality (+material) 

(2:4) *may build him a house   imperative + modality (+material) 

 

As well as this, like MOOD, modality can occur for all TRANSITIVITY types: 

(2:5)  It may please the staff   mental + modality 

 (2:6) She may be a good leader  relational + modality 

 (2:7) She may praise the man  verbal + modality 

 

Paradigmatically, MOOD and MODALITY are thus interdependent, suggesting their organisation 

within same functional component. In addition, they are both independent of TRANSITIVITY, 

suggesting that they form a distinct functional component. 

The second branch of axial evidence for metafunction involves the type of syntagmatic 

structure used to realise systemic choices. This draws on Halliday’s (1979) suggestion that 
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distinct functional components tend to be realised by different modes of meaning (see Section 

2.1.2 above). For MOOD and MODALITY, this in particular concerns their similarity of prosodic 

structure (Halliday 1979: 66-67). Beginning with MOOD, distinctions between relatively 

indelicate types of MOOD (imperative, declarative, interrogative etc.) in English revolve 

around the presence or absence and ordering of the functions Subject and Finite (though this 

is by no means the case for all languages, see for example Quiroz 2008 for Spanish, Caffarel 

2006 for French, and Teruya et al. 2007 for a cross-linguistic mood typology). Indicative 

clauses have both a Subject and a Finite, whereas imperative clauses typically have neither. 

The subtypes of indicative, declarative and interrogative differ in terms of their ordering of 

the two functions: Subject before Finite for declarative, and Finite before Subject for 

interrogative
16

, as in (with Subject and Finite in bold): 

 

(2:8) Bring your sister.   imperative (no Subject or Finite) 

(2:9) Are you bringing your sister?  interrogative (Finite before Subject). 

(2:10) You are bringing your sister.  declarative (Subject before Finite). 

 

The Subject and Finite are crucial realisational structures for MOOD types in English. Looking 

syntagmatically these functions also present a prosody of PERSON, NUMBER, GENDER, and 

TENSE or MODALITY throughout the rest of the clause (more commonly known as ‘agreement’ 

or ‘concord’). For example, the Subject and Finite must agree in terms of NUMBER and 

PERSON: 

(2:11) Am I bringing your sister?    first person, singular. 

 (2:12) Are you bringing your sister?   second person, singular 

 (2:13) Is he/she bringing your sister?  third person, singular 

 (2:14) Are we/you/they bringing your sister?  first/second/third person, plural 

                                                           
16

 This simplifies the case somewhat by not taking into account the more delicate option of a wh-interrogative 

that has the Wh- element conflated with the Subject (e.g. Who had seen you?), and thus having the Subject 

preceding the Finite. This case, however, does not affect the argument being developed. 
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And in addition, the Subject and Finite must agree with their counterparts in the Moodtag in 

terms of PERSON, NUMBER, GENDER and either TENSE or MODALITY. 

 

(2.15) I am bringing your sister, aren’t I?  first person, singular, present  

 

(2.16) You are bringing your sister, aren’t you? 

 

second person, singular, present 

 

(2.17) He is bringing your sister, isn’t he? 

 

third person, singular, 

masculine, present  

 

(2.18) She is bringing your sister, isn’t she? third person, singular, feminine, 

present 

 

(2.19) She will bring your sister, won’t she? third person, singular, feminine, 

future 

 

(2.20) She was bringing your sister, wasn’t she? third person, singular, feminine, 

past 

 

(2.21) She must bring your sister, mustn’t she? third person, singular, feminine, 

modal: high 

 

(2.22) She can bring your sister, can’t she? third person, singular, feminine, 

modal: low 

 

This agreement between the central interpersonal functions of Subject and Finite, and the 

Moodtag (also considered an interpersonal system, Martin 2013:59) can be interpreted as a 

structural prosody encompassing the breadth of the clause. The choice of PERSON, NUMBER 

etc. affects multiple elements cutting across the entire clause. Similarly, MODALITY also 

displays a prosodic structure (Martin 2004, 2008). This can be most clearly seen when 

discussing metaphors of modality. (7) illustrates an example given by Halliday (1979: 66): 

 (2.23) I wonder if perhaps it might be measles, might it d’you think? 
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In this example, the same modality choice is realised a number of times through different 

expressions: I wonder, perhaps, might, might and d’you think. As Halliday suggests, each 

could work effectively on its own, but working together the effect is cumulative, reasserting 

the speaker’s angle on the statement and giving a prosody that colours the entire clause. 

Following Martin’s (1983, 2013) argumentation, as both MOOD and MODALITY have both a 

large degree of paradigmatic interdependence and reflect the same prosodic structure, they 

can be considered part of the same functional component: the interpersonal metafunction. 

Further, as they both are relatively independent of TRANSITIVITY, and TRANSITIVITY tends to 

have its own distinctive structure (i.e. a particulate structure, Halliday 1979), MOOD and 

MODALITY can be treated as forming a different functional component to that of TRANSITIVITY. 

It is in this sense that metafunction can be said to be derived from axis. 

Similar arguments can be made for rank and strata. Like distinct metafunctions, ranks and 

strata arise from distinct bundlings of systems. The factor that distinguishes metafunctions, 

ranks and strata is the relation between these bundles of systems. Beginning with rank, we 

can see the distinct systems by considering nominal groups in English in relation to the clause. 

An English clause may have a Subject, such as Those houses in those houses are being 

renovated. In this case, the Subject is realised by a nominal group (those houses). This 

nominal group can be expanded to produce, for example, Those two blue federation houses. 

The addition of every word in the nominal group requires a distinct choice. That is, for 

example, to insert those (Deictic), requires a paradigmatic choice that is independent of the 

choice to insert two (a Numerative). We can have one without the other, (those blue 

federation houses or two blue federation houses), both (those two blue federation houses) or 

neither (blue federation houses). The same independence holds for both blue (an Epithet) and 

federation (a Classifier).
17

 The system for nominal groups can thus be shown as in  2.18 

(simplified for discussion). 

                                                           
17

 houses in this case is a Thing, and, aside from certain specific situations, is always inserted. 
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Figure 2.18 Simplified network of nominal groups in English 

In the clause given above, the entire nominal group occurs within the Subject of the clause. 

This is shown by the following examples where the nominal group remains together despite 

the Subject moving around: 

 (2.24) Those two blue federation houses are being renovated. 

 (2.25) Are those two blue federation houses being renovated? 

In these examples, the expanded nominal group remains together as the clause shifts from 

being a declarative (2.24, Subject first) to an interrogative (2.25, Subject second). The 

question that arises is where does the nominal group network fit in relation to the clause 

network? As the nominal group above occurs with the Subject, one option is to wire the 

nominal group network into the clause network for all clauses with a Subject, i.e. the nominal 

group network would be entered at the clause rank when choosing indicative (including 

declarative and interrogative clauses) rather than imperative. 

The issue with this approach is that nominal groups can occur in other elements of the clause. 

For example in addition to realising the Subject, they can realise the Complement: 

(2.26) We renovated those two blue federation houses. 
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Or an element within a prepositional phrase realising an Adjunct
18

: 

(2.27) We grew up in those two blue federation houses. 

If we place the nominal group network at the same level as the clause, then we need to repeat 

the network at every possible point that it could occur. A more elegant solution that captures 

the generalisation of nominal groups across multiple elements in the clause is to set up a 

separate network at a level below. This second network (the rank of group) then becomes a 

constituent of the functions at the higher rank of clause. That is, each selection at the clause 

level will be realised by a particular configuration of clausal functions, and each clausal 

function will be in turn realised by a particular selection in the group rank network. This 

allows the nominal group to be generalised across all its possible points of realisation in the 

clause, and accounts for the constituency that is seen where clausal functions tend to be 

realised by whole groups. It is in this way that ranks can be derived from systemic bundlings 

on the paradigmatic axis and structural realisations on the syntagmatic axis. 

Finally, stratal distinctions also involve distinct systemic bundles. However the relation 

between these systems is not one of constituency, as for rank, but of abstraction. To see this, 

we can consider the grammatical system of MOOD in relation to the discourse semantic 

system of SPEECH FUNCTION in English. These systems both organise the distinct roles played 

in dialogue, however they do so from different perspectives. These two perspectives, MOOD 

from lexicogrammar, SPEECH FUNCTION from discourse semantics, do not map directly onto 

each other. Rather, any particular choice in one system may coincide with a number of 

different choices in the other system. For example, we can consider the possible realisations 

of the SPEECH FUNCTION choice of question, which involves demanding information. The 

most direct way of asking for information is to use a wh-interrogative within the MOOD 

system: 

(2.28) – Where shall we put it? 

 - Over there. 

This achieves its speech functional goal of receiving information from the addressee. 

However depending on how we wish to position themselves in relation to other speakers, we 

                                                           
18

 More strictly, the nominal group realises a Minor Complement within the prepositional phrase. 
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can alternatively use other grammatical choices to fulfil the same speech function. For 

example, we could use a declarative: 

(2.29)  - And we should put it….? 

 - Over there. 

Or a polar interrogative, giving two choices: 

 (2.30) - Should we put it over here or over there? 

  - Over there. 

Or we could even use an imperative to make clear what we want our responder to do: 

 (2.31)  - Tell me where to put it. 

  - Over there. 

In each case, there is a distinct grammatical choice (2.28 - interrogative:wh; 2.29 – 

declarative; 2.30 – interrogative:polar; 2.31 – imperative). However they each fulfil the same 

choice in speech function; they all demand (and receive) information. This is in contrast to 

the different ways in which we can demand an action (issue a command). A command can be 

direct, through an imperative: 

 (2.32) - Move it over there. 

Or it could be indirect by using a polar interrogative (known as an interpersonal grammatical 

metaphor): 

 (2.33)  - Can you move it over there? 

Or even a declarative: 

 (2.34)  - I’d like it moved over there. 

What these examples show is that there are a series of choices of SPEECH FUNCTION and 

MOOD that, although related, do not map onto each other precisely one to one. That is, there 

are two distinct networks of systems. Unlike those for the rank scale, however, the two 

systems are not related through constituency; there is not a structural function such as Subject 

in the network of SPEECH FUNCTION that every MOOD choice sits within. Rather, the SPEECH 
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FUNCTION system is at a more abstract level than the MOOD system. The result of this is that 

discourse semantic choices can often be realised by a range of elements within the grammar. 

We can see this by looking a choice within the discourse semantic system of ENGAGEMENT in 

English (Martin and White 2005; building on Halliday’s (1982) description of modality 

metaphors). This system organises the varying ways in which English allows a speaker to 

mark that other possibilities than what is being said may be present. Crucially for our 

argument, the choices in this system at the stratum of discourse semantics can be realised 

across a large range of lexicogrammatical elements in different ranks. The following 

examples all show the discourse semantic choice of entertain (specifying that other 

possibilities may be available other than that mentioned; Martin and White 2005), realised 

across different grammatical environments. First, it can be realised by modality in the verbal 

group: 

 (2.35)  Cronulla may win next year 

Alternatively, it may be realised by a Comment Adjunct at the rank of clause: 

 (2.36) Possibly, Cronulla will win next year 

Or by a projecting clause complex: 

 (2.37)  I think Cronulla will win next year 

Or a clause with a discontinuous Subject: 

 (2.38) It is possible Cronulla will win next year 

The distribution of possible realisations shows that the discourse semantic choice of entertain 

is not tied to any lexicogrammatical unit. Rather, it cuts across units and affords many 

possible realisations. Distinct strata, therefore, maintain distinct systemic bundlings. However 

unlike ranks, these bundling are not related through constituency, but through abstraction. It 

is in this way that strata can be derived from axis. 

The theoretical categories of metafunction, rank and strata can thus all be derived from axis. 

Each rely on having their own sets of systems (paradigmatic choices) and their own structures 

(syntagmatic realisations); however the relation between each system-structure cycle 

determines whether they constitute ranks, metafunctions or strata. The system-structure 

cycles of rank are related through constituency; those of strata are related through abstraction; 
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and those of metafunction are related through relative independence and distinct structural 

types. Table 2.6 outlines the axial evidence needed for a distinction in metafunction, rank and 

strata. 

 Axial justification 

metafunction 

 

 Each metafunction displays 

o relative paradigmatic independence to other 

metafunctions 

o a distinct type of structure, e.g.  

 interpersonal: prosodic structure; 

 ideational: particulate structure 

 textual: periodic structure 

o relative paradigmatic interdependence within 

metafunctions 

 

rank 

 

 Each rank displays distinct paradigmatic options and 

syntagmatic structures 

 System-structure cycles are related through constituency 

 

strata 

 

 Each stratum displays distinct paradigmatic options and 

syntagmatic structures 

 System- structure cycles are related through abstraction 

 

 

Table 2.6 Axial justifications for metafunction, rank and strata 

This axial reasoning allows broader theoretical categories in Systemic Functional to be 

developed and justified from the same starting point. Moreover, it offers a common basis 

upon which semiotic descriptions can build, allowing each semiotic resource to reveal its 

functionality. From this basis we can begin to test, rather than assume, claims such as the 

pervasiveness of metafunctionality across semiosis, and potentially develop new, previously 
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unseen categories. Accordingly, the description of mathematics in this thesis will build its 

architecture from the interaction of the paradigmatic and syntagmatic axes. It will propose a 

metafunctional distribution of meaning across multiple levels (ranks, strata and other types), 

with each category justified by having their own system-structure cycle. By working to 

justify these categories, we will see that mathematics organises its architecture in a 

significantly different manner to English.  

Before moving on to the description, the next section gives a final note on the data used for 

this thesis. 

 

2.5 Data used in the study 

This thesis is primarily descriptive. It develops models of mathematics, image and language 

at various strata in order to understand their role in building the technical knowledge of 

physics. As such, the text analysis presented throughout each chapter is used in the service of 

the broader models developed throughout each chapter. The data used reflects this. As the 

thesis is most readily inspired by educational concerns, the corpus is entirely gathered from 

educational sources (in Bernstein’s 1990 terms, the field of reproduction). Accordingly, it 

does not consider the field of research (the field of production). Although it is probable that 

much of what is discussed in this thesis could be used to analyse research, it remains to be 

seen just how valid it remains outside an educational context. 

The corpus has been developed from three broad sources: textbooks, classroom discourse and 

student work.
19

 Drawing upon these three sources creates a breadth of data that allows a 

perspective on the differing ways mathematics, language and image are used to build 

knowledge in each context. The data focuses on classical mechanics and quantum physics 

(broadly defined) as they appear to be the fields that most commonly use all three resources. 

Moreover, the two fields between them occur across all stages of schooling from primary 

(elementary) school to first year undergraduate university physics. Although these fields 

constitute the main corpus, the model was periodically corroborated with data from other 

areas including astrophysics, relativity and elecromagnetism. 

                                                           
19

 Primarily from New South Wales, Australia. The full details of the corpus are given in Appendix C. 
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The textbooks include excerpts from classical and quantum physics that range from primary 

(elementary) school through junior and senior high school to first year undergraduate 

university.
20

 The primary school (~ ages 6-12) and junior high (secondary) school (ages ~12-

16) textbooks are general science textbooks that focus on the areas of motion and forces 

(broadly, the field of classical mechanics in physics). The senior high (secondary) school 

(~16 -18) and undergraduate textbooks are designed for stand-alone physics subjects across 

both classical and quantum physics. Second, the classroom discourse arises from excerpts of 

videos from two sources. The first includes sixteen classes from a final year high school 

physics course in a high achieving school in New South Wales, Australia, that focus on a 

topic called Quanta to Quarks (dealing with quantum physics, Board of Studies 2009). The 

second is a quantum physics lecture series of twelve lectures in the second semester of an 

undergraduate university physics course, also in New South Wales. Finally, the student work 

incorporates the final exams from both the high school and university courses (covering 

multiple topics alongside those of quantum physics) from twenty-seven students (seven from 

high school, twenty from university), ranging from low to high achieving. The corpus used in 

this thesis is summarised in Table 2.7. 

 

 

 

 

 

 

 

 

 

 

                                                           
20

 I greatly thank Qingli Zhao and Shi Wen Chen for allowing me to use their corpora of primary school (Qingli) 

junior high school (Qingli and Shi Wen) and senior high school (Shi Wen) textbooks, and the university lecturer 

and classroom teacher who very generously let me record their classes. 
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 Data 

Primary School 

(~6-12 years old) 

 Excerpts from eight general science textbooks. 

o Focused forces and motion  (classical mechanics) 

Junior High School 

(~12-16 years old) 

 Excerpts from five general science textbooks. 

o Focused on forces and motion (classical mechanics) 

Senior High School 

(~16-18 years old) 

 Excerpts from five physics textbooks. 

o Four focusing on forces and motion (classical 

mechanics) 

o One focused on quantum physics 

 Excerpts from video and audio of one unit in a final year 

high school classroom. 

o Includes sixteen classes focused on quantum physics 

 Marked final exam student responses focused on quantum 

physics, classical mechanics, special relativity and 

electromagnetism 

o Seven exams ranging from high to low achieving 

responses 

1
st
 Year 

Undergraduate 

University 

 Excerpts from one physics textbook 

o Focused on quantum physics 

 Excerpts from video and audio of one unit in an 

undergraduate lecture series. 

o Includes twelve lectures on quantum physics 

 Marked final exam student responses focused on quantum 

physics, fluid physics and electromagnetism. 

o Twenty exams ranging from high to low achieving 

responses 

 

Table 2.7 Corpus used in this thesis. Full details in Appendix C 
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This corpus presents a large and varied data set that involves a high usage of image and 

mathematics. The high use of mathematics and images allows an insight into the possible 

variation in each of these resources in physics, which is crucial for developing the descriptive 

models in Chapters 3-5. In addition, the range of data from primary school to university 

allows the development of knowledge in physics to be tracked, and the evolving role each 

resource plays in construing this knowledge. The corpus thus offers a rich pool of data that 

underpins both the descriptive and knowledge-building goals of this thesis.  

The more specific segments of the corpus used for various components of the model will be 

detailed in each chapter. 

 

2.6 Knowledge and multisemiosis in physics 

The three traditions traced in this chapter have significantly grown our understanding of 

scientific knowledge and the resources used to construe it. Each chapter builds upon these 

traditions in order to expand the models and further understand how physics organises its 

knowledge and discourse. Chapter 3 develops O’Halloran’s (2005) description of 

mathematics to construct a fully systematised grammar of mathematics based on axial 

principles that brings out mathematics specific functionalities. Chapter 4 considers the 

interaction of mathematics and language through the Systemic Functional model of genre and 

utilises Legitimation Code Theory’s dimension of Semantics to trace the role of mathematics 

in building physics knowledge from primary school to university. Chapter 5 interprets 

mathematics and images in terms of field and contrasts them with the field-based description 

of scientific English to reveal the specific types of meaning each resource offers for physics. 

Finally, Chapter 6 brings together the threads that arise in the preceding chapters and calls for 

the development of a genuine semiotic typology. We now turn to the descriptive component 

of the thesis that looks at mathematical symbolism as a meaning-making resource in its own 

right. 
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CHAPTER  3 

A Grammar of Mathematical Symbolism 

 

In science, mathematics is pervasive. It permeates many disciplines, often underpinning 

theoretical and descriptive architecture. This is apparent in no discipline more so than physics 

(Parodi 2012), and is highlighted throughout studies of scientific discourse informed by SFL 

and social semiotic theory. Huddleston et al. (1968: 684), in their early report on the 

grammatical features of scientific English, suggest the distinctive role of mathematics to be 

one of the most obvious differences between scientific texts and most registers of English. 

The more recent work of O’Halloran (e.g. 2005) and Lemke (e.g. 2003) have demonstrated 

that aside from its sheer quantity in use in scientific text, mathematics also provides unique 

avenues for meaning-making that greatly expand the potential of science (see Chapter 2). 

As students move through schooling, mathematics increasingly plays a critical role in the 

high stakes reading needed to build their knowledge of physics and the high-stakes writing of 

assessment. However the uncommon sense nature of mathematics creates a potential barrier 

for students accessing physics. As with the language of science in general, physics discourse 

is considerably removed from the everyday language students use and from the language of 

other academic disciplines (Halliday and Martin 1993). Without effective instruction, many 

students cannot access this highly valued language, and will struggle for success through 

schooling. As discussed in Chapter 1, in response to this general problem, a program of 

educational intervention has been developed, informed by the Systemic Functional model of 

language (cf. Rose and Martin 2012, Martin and Doran 2015e). Crucially, this program is 

buttressed by rich descriptions of the English language from the perspectives of 

lexicogrammar (Halliday and Matthiessen 2014), discourse semantics (Martin 1992a), genre 

(Martin and Rose 2008) and various registers of academic language (e.g. Halliday and Martin 

1993, Martin and Veel 1998 for science). These descriptions provide the basis for the 

knowledge about language and text structure that is crucial in Sydney School genre pedagogy 

(Rose and Martin 2012). Without these elaborate descriptions and their recontexualisation for 

educational purposes, teachers, and consequently their students, would be left with only a 

common sense understanding of the linguistic resources necessary to read and write the 

highly valued texts that construe academic knowledge. 
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As it is for language, so it is for mathematics. If we seek to develop an explicit pedagogy that 

encompasses multimodal meaning making, we must have rich descriptions of the various 

semiotic resources used in the wide array of academic disciplines comparable to those we 

have for language. With regard to mathematics, this is particularly pertinent; mathematical 

symbolism construes extraordinarily uncommon sense knowledge and, as we will see, is 

organised in a manner which is considerably distinct to English. It is, however, remarkably 

consistent in its meaning making patterns, and can be described through relatively few 

systems. This chapter takes up this task by developing a comprehensive description of the 

grammar of algebraic mathematical symbolism used in school and university physics. This 

will be consolidated in the following chapter through a description of the bimodal genres that 

involve both English and mathematics. 

By developing these descriptions, we can interpret the progression of mathematics in physics 

from primary school to university physics through shifts in both genre and grammar. These 

shifts organise the meanings made at various stages in the knowledge building, allowing 

physics to build relatively condensed and abstract models of its object of study, at the same 

time as maintaining contact with the real world. As an organising principle, Chapter 5 will 

interpret the various changes in terms of the register variable field, and will bring in images 

to round out the picture. By developing descriptions of mathematical symbolism at the levels 

of grammar, genre and register, the specific roles mathematics play in knowledge building 

can be more effectively compared and contrasted to scientific English as described over the 

last sixty years of Systemic Functional work. To appropriate Rose’s (2001: 2) justification for 

his description of Pitjantjatjara: 

My purpose for undertaking this description was not simply to document the features 

of [mathematical symbolism] for the benefit of the academy, but to provide a 

comprehensive account of its resources for meaning that can be systematically related 

to functional accounts of these resources in spoken and written English [and other 

languages and resources]... It is my hope that this will help inform [mathematics and 

science] pedagogy.  

Although the justification for developing the descriptions and the data used both come from 

the field of education, the descriptions here are not, as it were, educational. That is, the 

descriptions here are not those of a teachers’ grammar. The descriptions developed here are 

first and foremost semiotic descriptions that aim to do the semiotic system under study justice 
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(Halliday 1992b, Caffarel et al. 2004b). In these terms, although the description seeks to be 

appliable, it is not yet applied. Much of this chapter is thus more akin to work within 

Systemic Functional language description (e.g. Caffarel et al. 2004a, Martin and Doran 2015b) 

than it is to work with more specific educational concerns. By building a description that is 

neutral to any particular applied research goal, it is hoped it can be adapted for any purpose, 

educational or otherwise. The description is thus situated within the field of semiotic 

description and typology (a field inclusive of language description and typology) (Martin 

2011a). 

Mathematical symbolism is a semiotic resource that is organised in a substantially different 

manner to English. The grammar developed in this chapter brings out these differences while 

also providing certain points of contact and similarity between the two. The description 

primarily builds upon O’Halloran’s (2005) description of mathematics, aiming to build a 

formalised systemic and structural account of the grammar. 

 

3.1 Principles of description 

Semiotic description in the Systemic Functional or Social Semiotic tradition has taken many 

forms. As discussed in Chapter 2, a range of different assumptions have been used as the 

basis for description, but there has been insufficient discussion of their motivation and of the 

criteria for justifying distinctions. Accordingly, in the absence of an agreed upon 

methodology for semiotic description, this chapter takes three principles as the overarching 

goals to guide the development. First, the description must in some way bring out the specific 

functionality of the resource under study. This involves accounting for the possible variation 

within the resource and proposing varying degrees of generalisation so as to push beyond a 

simple inventory of discrete possibilities. Second, the description must be able to be 

compared with descriptions of other resources (such as gesture, image, English, Pitjantjatjara, 

Tagalog etc.), and in doing so show similarities and differences in organisation. Third, the 

description must be based upon explicit methods of argumentation that allow it to be 

compared and judged in relation to competing descriptions of the same resource. These three 

broad principles will guide this chapter, which will thus take a step toward building a 

methodology and theoretical basis upon which descriptions can be developed, compared and 

argued over. 



77 
 

To develop an adequate semiotic typology that allows for description, comparison and 

argumentation, each semiotic resource must be described on their own terms. This means first 

and foremost that categories developed for language cannot be transferred unquestioningly 

into the description of other resources (see Caffarel et al. 2004b for similar cautions in 

relation to language description). Any category proposed must be justifiable internal to the 

system being studied. 

The basis for the description in this chapter will be the interaction of the paradigmatic and 

syntagmatic axes. Following Martin (2013), these axial relations are taken as the theoretical 

primitive from which larger macrotheoretical categories such as metafunction, rank and strata 

can be derived. Recapping the more detailed argument developed in Chapter 2 (Section 2.4.4), 

we will focus briefly on the axial basis for metafunction. Broadly, metafunction can be 

derived from two distinct strands: the relative paradigmatic in(ter)dependence of systems, and 

the type of syntagmatic structure (for a more fully developed discussion of the criteria for 

determining metafunction see Martin 1983). In terms of paradigmatic systems, evidence for 

suggesting distinct functional components hinges on systems being more or less independent 

of each other. If choices in a bundle of systems are shown to be relatively independent of 

another bundle of systems, there exists evidence for distinct functional components. 

Structurally, Halliday (1979) suggests that distinct functional components tend to be realised 

by distinct structural modes of meaning. For English, logical meaning is related to iterative 

univariate structures, experiential meaning to multivariate structures, interpersonal meaning 

to prosodic structures and textual meaning to periodic structures. Thus, if different bundles of 

systems tend to be realised by different types of structure, there is evidence for metafunctions. 

Axial argumentation such as this will be used throughout the various components of the 

grammar of mathematical symbolism. 

 

3.2 Architecture of the grammar of mathematical symbolism 

Developing a description with axis as a theoretical primitive leads to an architecture of 

mathematics that is significantly different to that of English (or indeed any other language 

described in Systemic Functional terms to date). The three broad areas of difference revolve 

around the predominant types of structure coordinating the architecture (see Section 3.4.1-

3.4.5), the metafunctional organisation (Section 3.4.7) and the levels (rank and nesting) at 

which choices are made (Section 3.4.6). Each of these will be briefly forecast before moving 
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onto the description proper. Questions regarding stratification in mathematics will not be 

pursued in detail here. 

Very broadly, the structure of mathematical symbolism can be characterised as having a very 

large univariate component. This means that throughout the grammar most choices can be 

made iteratively. Although there are some multivariate (non-iterative) components, these are 

restricted to smaller segments of the overall system (see Section 3.4.3). This predominantly 

univariate structure determines significant aspects of both the metafunctional and hierarchical 

organisation of the system. 

Looking metafunctionally, the most elaborate areas of the grammar resemble those of the 

logical component in a language like English (Section 3.4.7.1) In addition, there are two other 

components with distinct systems and structures. One that can be compared to the textual 

component in English, and another that will be termed the operational component (Sections 

3.4.7.2 - 3.4.7.3). Notably, there are no groups of systems or structures that resemble those 

comprising the interpersonal metafunction in language (Section 3.4.7.4). If we are taking 

metafunctions as emergent phenomena from axis and not as primitives themselves, it follows 

that without any distinct interpersonal systems or structures, there is no evidence for an 

interpersonal component in the grammar of mathematical symbolism. This pushes one step 

further O’Halloran’s (1999, 2005) insight that in the evolution of mathematical symbolism 

from language, interpersonal meaning has been dramatically contracted; this chapter in fact 

suggests it does not appear at all. 

Looking in terms of the hierarchical level organisation of mathematical symbolism, we again 

see that mathematics is organised differently to languages such as English. There is a small 

two-level rank-scale built out of the operational component, organising a small set of systems 

on both levels. However the main hierarchical organisation has to do with obligatory 

univariate nesting (Section 3.4.4), derived from the logical component. The hierarchy of 

mathematics is thus an interaction between univariate-based nesting and a multivariate-based 

rank scale.  

Each of these main features of mathematical symbolism poses challenges for Systemic 

Functional descriptive procedures, and so will be built up and justified in detail as the 

description is developed. 
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3.3 Boundaries on the description 

Before moving to the description, a final note must be made of the limitations of the grammar. 

First, the mathematics considered in the grammar is only the algebraic symbolism used in 

physics in schooling and first year university (for details of the corpus see Appendix C). This 

means that the description does not consider other registers of mathematics such as calculus 

or geometrical symbolism. The second restriction is that it only looks at the internal 

organisation of the mathematical system; it does not consider the interaction of mathematical 

symbolism with English or any other resources, such as in Let x = 2. This allows the 

mathematics to be seen as a system in its own right, and provides a firmer basis to consider 

what happens when it does interact with language. 

While the methodology and theoretical apparatus to deal with non-linguistic semiotic systems 

is still being developed, it is appropriate to consider such a restricted grammar. This is in part 

because at this stage, as discussed above, it is not clear whether all the various types of 

mathematical symbolism can be considered one semiotic resource or a family of resources, 

nor is there any clear understanding as to where exactly to draw the line between 

mathematical symbolism and written language (e.g. O’Halloran’s 2005 discussion of semiotic 

adoption), or indeed how to draw boundaries between any semiotic resources (Bateman 

2011). An axial approach to semiotic description offers a path to make some progress with 

these and many other questions. 

Due to the constraints on the grammar detailed above, the description laid out in this chapter 

is offered as a step toward building a more comprehensive description that accounts for all 

mathematical symbolism and the broader field of semiosis in general. 

 

3.4 Grammar of mathematics 

The bulk of the chapter will be devoted to building the systems and structures needed to 

account for the variation in mathematics. The description will begin with individual symbols 

and their complexing relations into expressions (Section 3.4.1). Following this, we will look 

at larger mathematics statements such as equations (Section 3.4.2), taking into account their 

organisation of information flow, and their further complexing. We  will then move to 

consider the internal variation of symbols themselves (Section 3.4.3) before considering the 

impact the univariate nature of mathematics has on the hierarchy of units in mathematics 
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(Section  3.4.4). The final component of the grammar will consider the different elements that 

can occur within symbols (Section 3.4.5). Once these descriptions have been completed, they 

will form the basis of a discussion of the rank and nesting hierarchies in mathematics 

(Section 3.4.6) and the metafunctional organisation of the grammar (Section 3.4.7). 

 

3.4.1 Expressions as symbol complexes 

To begin our discussion, consider the following equation: 

(3:1)  F = 0.5 × 3 

The equation is made up of an equals sign, =, surrounded on either side by two expressions: F 

and 0.5 × 3 (following the terminology of O’Halloran 2005 and Huddleston et al. 1968). Each 

expression in turn consists of symbols
21

: the expression on the left contains a single symbol F, 

whereas the expression on the right consists of two symbols, 0.5 and 3, related by the 

multiplication operator ×. The organisation of the statement into expressions and symbols is 

shown in Table 3.1 

 

F = 0.5 × 3 

expression 
 

expression 

symbol symbol  symbol 

 

Table 3.1 Expressions and symbols 

The units expression and symbol are presented at this stage so that we have some basic 

terminology to discuss mathematical statements. Further into the discussion, we will formally 

derive symbols in relation to axis. We will also show that expression as a unit is not needed 

in the formalised grammar; however at this stage it provides a useful term for each side of the 

statement. To begin, we will build up from the smaller of these units, the symbol. 

                                                           
21

 O’Halloran terms this unit component (1996, 2005) or more recently element (2007b). The term symbol is 

preferred here as a more register neutral term than component as, in physics, components refer to a single 

dimension within a multi-dimensional vector, signified by a symbol with a subscript, such as Fy. Element will 

be used for a separate but closely related unit, see Section 3.4.5. 
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Equation (3:1) above shows that symbols can occur within expressions either on their own or 

in relation to other symbols. If they occur with other symbols, the relations between them, 

known as operators, can be of various types: multiplication ×, division ÷, addition +, 

subtraction -, roots √ and powers shown by a superscript, e.g. x
2
 (the system for these 

relations will be detailed in the following section). The relations set up occur between two 

symbols or groups of symbols. As O’Halloran (2005) points out, there is no limit to the 

number of relations and symbols that can occur within an expression. This means that 

symbols in expressions are indefinitely iterative. The expression on the right hand side of 

(3:2), for example, shows four symbols (3, z, 9 and 2) related by three operators (×, -, +). 

 (3:2)            

Continuing O’Halloran’s argument, in expressions there is no need to postulate a central 

entity that functions analogously to the Medium in an English clause (that can be contrasted 

to an Agent or Range). Each operator must necessarily have a symbol or group of symbols on 

both sides of it. As they relate two symbols or groups of symbols, in mathematics these 

operators are known as binary operators (in contrast to unary operators which will be 

introduced in Section 3.4.3). 

The possibility for indefinite repetition of symbols without any central entity indicates that 

the grouping of symbols into expressions is best modelled as a univariate structure (Halliday 

1965). This means that each symbol has the same function as all others; what differs is the 

specific dependency relation among symbols in any particular expression. Expressions can 

thus be viewed as symbol complexes. This is similar to one dimension of Halliday’s 

description of the English nominal group (1985), whereby the group is seen as a complex of 

words. Unlike the English nominal group, however, there is no evidence for a multivariate 

interpretation as well (along the lines of the Epithet, Classifier, Thing etc. distinctions). 

Rather, the grouping of symbols in expressions can be entirely explained univariately. 

 

3.4.1.1 System of EXPRESSION TYPE 

Throughout this chapter, the systems that organise the description will progressively be built, 

complementing the structural descriptions. These will form the basis of the broader 

conclusions about the organisation of mathematics discussed later in the chapter. As the 

description is being built piece-by-piece, some systems will necessarily be simplified until 
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further areas of the grammar have been filled out. Any changes to previous systems will be 

specified as we go. To begin, we will focus on the system of EXPRESSION TYPE, which 

organises the number of symbols within each expression. 

As any number of symbols can occur within expressions, the system of EXPRESSION TYPE is 

modelled as a recursive system. The first choice then, is between an expression involving 

only a single symbol, termed [simple], or those that include multiple symbols, termed 

[complex]. As mentioned above, if more than one symbol occurs, with every new choice of 

symbol, there must also be a choice of binary operator (O’Halloran’s operative processes) - 

such as ×, -, + etc. This choice occurs within the system of BINARY OPERATION, with the two 

most indelicate choices being between [arithmetic] and [exponentiation], described in more 

detail below. Choosing [complex] means that the system of EXPRESSION TYPE is entered again, 

to determine whether a third symbol is to be chosen. This recursion can go on indefinitely, 

resulting in the system network shown in Figure 3.1. 

 

Figure 3.1 Simplified system of EXPRESSION TYPE 

 

The network shows that when choosing the feature [complex] an extra symbol is inserted, 

denoted by β.  As well as this, a choice from the BINARY OPERATION system must be made 

and the EXPRESSION TYPE system is entered again.
22

 The wire from [complex] to EXPRESSION 

                                                           
22

 Right facing square brackets, ‘[‘, indicate alternative, either/or choices. Right-facing braces, ‘{‘, indicate 

simultaneous choices. Left-facing brackets, ‘}’, indicate a disjunctive entry condition. System network 

formalism described in detail in Appendix A. 
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TYPE indicates a recursive loop, with the possibility for indefinite iteration. Structurally, each 

symbol is realised by the insertion of a function, the first of which is labelled α, the following 

β, then γ etc.
23

 This produces a univariate structure where the same function is repeated 

indefinitely. The use of the Greek alphabet, α, β etc. is not used to suggest a hypotactic 

relation, as in Halliday’s description of English (1965). Rather it is used to distinguish the 

complexing of symbols with other forms of complexing that will use 1, 2, etc. and will be 

described further into the chapter in Section 3.4.2.2. 

 

3.4.1.2 System of BINARY OPERATION 

The system of BINARY OPERATION sets up the choices of operators between symbols, such as 

the arithmetic operations ×, -, +, ÷ and others grouped under the feature [exponentiation] that 

include powers, roots and logarithms. Binary operations necessarily link two symbols. 

Operations that involve only one symbol, such as the trigonometric functions sine, cosine and 

tangent, factorials ! and absolute value |…|, are classed as unary operators and will be dealt 

with in section 3.4.3. Binary operations are chosen each time [complex] is selected in the 

system of EXPRESSION TYPE, as shown by Figure 3.1. The set of operations accounted for in 

this description is shown in Table 3.2. This table shows the terminal realisations of the 

network of BINARY OPERATIONS. 

 

 

 

 

 

 

 

 

                                                           
23

 The network only shows the insertion of  with the choice of [complex]. More strictly, it should specify that 

the realisation of [complex] is the insertion of function indicated by the Greek letter following the previous 

insertion. This has not been spelt out in the network purely for ease of reading. 
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Operation Symbol Example 

addition +     

subtraction       

addition and subtraction ±     

division 

  

or 

― 

or 

  

    

 

 

 
 

 

    

multiplication 

  

or 

elided 

    

 

   

power superscript    

root √ √ 
 

 

logarithm log       

 

Table 3.2 Binary operations 

 

The network developed in this section will describe a set of generalisations based on agnation 

patterns. Agnation patterns allow for instances to be grouped according to their similarities 

and differences with other instances, based on what can or cannot be said under certain 

conditions (or possibly more appropriately, what is acceptable or not under these conditions) 

(for a detailed discussion of agnation, see Davidse 1998). As an example of agnation patterns 

in English, we can consider MODALITY in relation to MOOD and TRANSITIVITY (as we did in 

Chapter 2, Section 2.4.4). MODALITY choices can occur for all TRANSITIVITY types: 

(3:3)  It may please the staff   mental + modality 

 (3:4) Roxburgh may play Estragon  relational + modality 

 (3:5) She may praise the man  verbal + modality 
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But is more restricted in relation to MOOD types: 

(3:6) She may build him a house   indicative + modality 

(3:7) *may build him a house   imperative + modality
24

 

The restrictions on MODALITY in relation to MOOD but not TRANSITIVITY suggests that it is a 

subsystem of MOOD but simultaneous with TRANSITIVITY. 

In mathematics, grammaticality judgements are more sharply defined than in language. This 

is due to the fact that mathematics is a designed system with strictly defined possibilities for 

variation. In addition, the realisations of BINARY OPERATIONS are a relatively small closed 

class, allowing many choices to be realised lexically. 

 

3.4.1.2.1. Arithmetic operations 

The primary distinction within BINARY OPERATION opposes [arithmetic] to [exponentiation] 

operations. [arithmetic] operations are those of ×, ÷, –, + and ±, and [exponentiation] includes 

powers, roots and logarithms.
25

 Beginning with [arithmetic] operations, there are four basic 

relations: multiplication ×, division ÷, addition + and subtraction –. These operations each 

have different characteristics that can be grouped as two cross-classifying pairs. The first 

characteristic distinguishes those operations which are both associative and commutative (+ 

and ×), against those that are not (- and ÷). Being commutative indicates that the order of the 

symbols related by this operation does not matter; symbols are reversible. Both addition (+) 

and multiplication (×) are commutative for every value of a and b: 

(3:8) addition as commutative: 

              

   e.g. 

      

                                                           
24

 Note that an asterisk * indicates that something is ungrammatical or unnacceptable, i.e. it cannot be said. 
25

 In mathematics, the term exponentiation is often reserved just for the power relation. However as I am not 

aware of a general term that covers powers, roots and logarithms, and as my argument for grouping them 

together involves the simple conversion between them and their interlocking definitions, I am appropriating 

[exponentiation] to cover all these operations. Obviously the term exponentiation in this sense is also distinct 

from the linguistic process of realising a grammatical category with a phonological or graphological exponent. 
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(3:9) multiplication as commutative: 

           

   e.g. 

      

      

These equations show that with addition (+) and multiplication (×), the sequence of the 

symbols a and b can be reversed without affecting the result. i.e.     is the same as    , 

and     is the same as    . As well as being commutative, addition and subtraction are 

both associative. This indicates that when there are multiple operations of the same type, the 

order in which each operation is made does not matter. This can be shown through adding in 

brackets around different combinations of a, b and c: 

 

(3:10)  addition as associative: 

    (   )      (   ) 

   e.g. 

(   )       

  (   )     

(3:11)   multiplication as associative 

   (   )      (   ) 

   e.g. 

(   )       

  (   )     

In this regard, multiplication and addition can be opposed to division and subtraction which 

are neither associative nor commutative: 

 (3:12)  subtraction, non-commutative: 
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    *          

   e.g. 

       

       

 (3:13)  division, non-commutative: 

   *          

e.g. 

          

        

 (3:14)  Subtraction, non-associative: 

    * (   )      (   ) 

   e.g.  

(   )       

  (   )    

 (3:15)  division, non-associative: 

    * (   )      (   ) 

   e.g. 

(   )    
 

  
 

  (   )    

 

To generalise this distinction, we will say that × (multiplication) and + (addition) hold the 

feature [associative], and ÷ (division) and – (subtraction) hold the feature [non-associative].
26

 

This system of ASSOCIATIVITY is cross-classified with another system that groups × 

(multiplication) with ÷ (division), and + (addition) with – (subtraction). This distinction is 

                                                           
26

 And so, in this system, the feature [associative] includes both associativity and commutativity. 



88 
 

intended to capture the regularly used conversion between division and multiplication, and 

between addition and subtraction in mathematical texts, whereby: 

 (3:16)       
 

 
 

and 

 (3:17)       (  ) 

These equations show that division can be converted to multiplication by dividing a with 
 

 
. 

Similarly, addition can be converted to subtraction by subtracting (–b) from a. These 

conversions are regularly used in mathematical derivations and as such are an important 

relationship between the operations. 

The equations above each shift b to its inverse. For equation 3:16, shifting division to 

multiplication, the inverse of b is 
 

 
. This is known as its reciprocal or multiplicative inverse. 

In 3:17, shifting addition to subtraction, the inverse of b is –b, known as its additive inverse. 

The different forms of the inverse are a result of different variables known as identity 

elements. An identity element (x) is the number that when operated on another number (y) 

results in the same number (y). Using multiplication as an example, x is the identity element 

if:      . For multiplication and division, this number is 1. Any number can be 

multiplied or divided by 1 and the result is the same number:       and      . 

Multiplication and division, then, have an identity element of 1. Addition and subtraction, on 

the other hand, have an identity element of 0. When adding or subtracting from a number, it 

is 0 that produces the same number:       and      . Due to their shared identity 

elements, multiplication can be converted to division, and addition can be converted to 

subtraction and vice versa. 

To capture this distinction, a system termed INVERSE PAIR is proposed with two features: 

[multiplicative], which includes multiplication and division that have the multiplicative 

inverse, and [additive], which includes addition and subtraction that have the additive inverse. 

The cross-classification of the systems of INVERSE PAIR and ASSOCIATIVITY results in a 

paradigm that produces each of the basic arithmetic operations, shown in Table 3.3. 
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                      INVERSE PAIR 

ASSOCIATIVITY 

multiplicative additive 

associative multiplication (×) addition (+) 

non-associative division (÷) subtraction (-) 

 

Table 3.3. Paradigm of arithmetic operations 

The basic system of arithmetic operations thus involves two simultaneous systems, shown in 

Figure 3.2. 

 

Figure 3.2 Options for arithmetic operations 

 

Adding to these basic operations is the possibility for the operation ±, usually glossed as 

‘plus or minus’. This operation is an [additive] inverse operation, as 0 is its identity element, 

e.g:      . As well as this, it is both non-associative: *  (   )  (   )   ; and 

non-commutative: *        . Therefore it takes the feature [non-associative]. This 

combination of [additive] inverse and [non-associative] is the same as subtraction (–). Thus 

a conjunctive entry condition between these features is proposed that produces a system 

distinguishing between [subtraction] (–) and [plus-minus] ( ). 

The final distinctions deal with alternative realisations of multiplication and division. 

Multiplication can be explicitly realised by  , as in    , or more commonly, it can be 

elided, as in   . There are three symbolic realisations of division, the obelus ÷, as in    , 
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the vinculum ―, as in 
 

 
, and the forward slash /, as in    . The full network of arithmetic 

operations is shown in Figure 3.3.
27

  

  

Figure 3.3 Network of arithmetic operations. 

 

3.4.1.2.2 Exponentiation operations 

As well as the arithmetic operations described above, there is a second group of binary 

operations occurring in high school physics that will be grouped here under [exponentiation]. 

[exponentiation] includes three distinct operations: roots such as √ 
 

, powers such as    and 

logarithms such as      . The justification for grouping these three operations together 

derives from their mutual definition, and the fact that they each provide a different 

perspective on the same relation between three numbers or variables (see section 3.4.2.5). 

                                                           
27

 [addition] has been added with dotted lines and a dotted brace to indicate that the selection of [additive] and 

[non-associative] is realised by +, following the convention in Martin 2013:20. Formally, this is not required, 

however it is helpful in order show explicitly the realisation rule for these choices. 
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Powers, roots and logarithms are all mutually definable in that they each relate two of a set 

of three numbers, to equal the third. We can see this by taking a, b and c as variables, and 

using as examples the numbers    ,    ,     . [power] relates a and b to equal c: 

 

 (3:18)         [power] 

   e.g.        

 

[root] relates b and c to equal a: 

 

 (3:19)  √ 
 

    [root] 

   e.g. √  
 

   

 

[logarithm] relates a and c to equal b: 

 

 (3:20)           [logarithm] 

   e.g.          

 

From these we can show an equivalence relation between roots, powers and logarithms: 

                             √ 
 

                                   

This means that if one relation holds true, each of the others also hold true. This is 

exemplified by drawing on the numerical examples used above: 

       √  
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These agnation patterns justify grouping powers, roots and logarithms under the single 

feature [exponentiation].
28

 Adding these features to the system of arithmetic operations 

produces the full system of EXPRESSION TYPE in Figure 3.4. 

The system in Figure 3.4 shows that expressions can include a single symbol or a symbol 

complex related through binary operations. As discussed previously, the recursive system 

allows for an indefinite number of symbols to occur in the expression. Consequently, 

symbol complexes are best modelled as univariate structures. Their univariate nature is not 

unique to symbol complexing, however, as we will see below. Rather, it is a motif that runs 

through the entire system of mathematics - grammar, register and genre. Aside from being a 

distinct typological feature in comparison to language, this property has broader implications 

for the functional organisation of mathematics and its use in physics. Before discussing this, 

however, we will turn to the organisation of expressions into larger statements.

                                                           
28

 Regarding [power], O’Halloran (2005: 124) suggests that powers can be grouped as textual variations of 

multiplication as, for example         . Grouping powers and multiplication together, however, does not 

account for powers involving transcendental numbers such as π, e.g.   .    cannot be broken down into 

relations of multiplication or division, as one cannot have π multiples of a number. For this reason, it is best to 

group powers and multiplication as separate features. 
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Figure 3.4. Full system of EXPRESSION TYPE
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3.4.2 Mathematical statements 

In written texts, mathematical symbolism is organised into statements, the most common of 

which are equations, such as        
 

 
    . Statements involve at least two expressions, 

e.g.    and     
 

 
    , linked by a relator (e.g. the equals sign =). This section will be 

concerned with mapping the possible options and structures of statements. It will focus in 

particular on how statements link expressions and how they coordinate their meanings within 

larger texts. One lesson learnt from systemic descriptions of language is the importance of 

looking at examples in real data. Large stretches of text can highlight patterns impossible to 

see in de-contextualised examples, which in turn can provide insights into structural relations. 

An example of this is Fries’ (1981) study of thematic patterns in English text, which provides 

a discourse-based justification for Halliday’s clausal Theme in English (1985). Fries’ study 

shows that thematic progression correlates with the structure of unfolding discourse, and as 

such is not arbitrarily chosen. Without such an ecologically sensitive interpretation, we’d be 

left with English Theme defined purely by syntactic sequence (i.e. it comes first) and the 

notional glosses of ‘point of departure’ or ‘what the clause is about’. A discourse-based 

justification makes clear what the role of the grammatical function Theme is in language. 

 

3.4.2.1 Information organisation of statements 

Considering the importance of text-based descriptions, our focus on mathematical statements 

will take as its point of departure Text 3.1, from a senior high school textbook. 
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Calculate how much weight a 50kg girl would lose if she migrated from the earth to a colony 

on the surface of Mars. 

Answer 

On the earth: 

 

               

        

                 

On Mars: 

 

              

        

                 

 

 Loss of weight = 490 – 180 = 310 N. But there is no loss of mass! 

Text 3.1 (a). de Jong et al. (1990: 249) 

 

For our discussion, we will extract the mathematics and look at Text 3.1(b): 

 

 

               

        

                 

 

              

        

                 

 

  Loss of weight = 490 – 180 = 310 N. 

 

Text 3.1 (b). de Jong et al. (1990: 249) 

 

The mathematical statements in this text are grouped into three sections, beginning with 

       ,        and Loss of weight. To begin, we will focus on the two sections beginning 

with        and      . Each of these sections involving three lines, moving through a 

similar sequence (in Chapter 4, these will each be classed as a genre termed quantification). 

The first line includes a single symbol on the left (e.g.      ) and a symbol complex on the 

right(e.g.        ). The second line elides the symbol on the left of the equation, and 
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replaces the right side with numbers (e.g.       ). The final line continues the ellipsis of 

the left side and concludes the right side with a single number (e.g. 180) as well as units (N, 

glossed as ‘Newtons’, which are the units of force) and a direction (downwards). The ellipsis 

of the left side of the equation in lines two and three is a common pattern in mathematics. 

Filling in the ellipsis, these sections become: 

 

               

              

                       

 

              

             

                      

 

In the revised version, the symbol on the left (glossed as weight) is repeated in each set of 

equations. Those on the right, on the other hand, are changing. Taking a quick glance at the 

statement in the final line “Loss of weight = 490 – 180 = 310 N”, we see that the expression 

on the left also refers to weight, with the following expressions showing a progression of 

numbers. A similar progression occurs in Text 3.2, a different type of mathematical text that 

does not include numbers but only non-numerical symbols (we will term this text a 

derivation in the following chapter).  
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Alternative Form of Newton’s Second Law 

 

We have mentioned that the more momentum an object has, the greater will be the force 

required to stop it. But exactly how are force and momentum related? 

Consider an alternative statement of Newton’s Second Law (and the way in which Newton 

originally stated it) as follows: 

The time rate of change of momentum is proportional to the resultant force and acts in the 

direction of the force. 

To show the equality of these two different statements of Newton’s Second Law, consider 

the following: 

 ⃗    ⃗ 

     ⃗  
 ⃗   ⃗⃗

  
            

 ⃗  
 ( ⃗   ⃗⃗)

  
 

 
  ⃗    ⃗⃗

  
 

 
   ⃗

  
 

 Force is the time rate of change of momentum as stated by Newton! 

Text 3.2 (a) Warren (2000:123) 

 

Extracting the mathematics again produces Text 3.2(b): 

 ⃗    ⃗ 

 ⃗  
 ⃗   ⃗⃗

  
  

 ⃗  
 ( ⃗   ⃗⃗)

  
 

 
  ⃗    ⃗⃗

  
 

 
   ⃗

  
 

Text 3.2 (b) Warren (2000:123) 
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In this text, the first two statements shift both the left and right side of the equation. The left 

side shifts from  ⃗ (glossed as force) to  ⃗ (acceleration). The right side shifts from   ⃗ to 
 ⃗⃗  ⃗⃗⃗

  
. 

Following this, the third statement settles on  ⃗ for the left side. This is then kept stable 

through ellipsis in the rest of the text. The right side, however, continues to change.  

The relative stability of the left-hand side in comparison to the right is a consistent feature 

across most texts. Added to this is the strong tendency for the left-side to contain only a 

single symbol (or at the very least contain fewer symbols than the right) and to be only very 

rarely a number (as opposed to the non-numerical forms above). These tendencies are in 

spite of the fact that it is perfectly grammatical to swap the left and right side, or to have 

more symbols or numbers on the left than the right. Equations (3:21-26) are all grammatical, 

and in some sense mean the same thing: 

 

 (3:21)                

 (3:22)                

 (3:23)     
      

   
 

 (3:24)  
      

   
    

  (3:25)      
      

  
  

 (3:26)  
      

  
     

 

Despite the appearance of free variation in decontextualised examples, it is clear that in text, 

the probabilities of what will occur on the left and what on the right are significantly 

constrained. To account for this, we will follow O’Halloran’s suggestion of the function 

Theme for the left side of a statement (2005: 124). The Theme in mathematics texts, as in 

language ones, tends toward relative stability. It holds in place the angle through which the 

statement is being viewed and signals the relevancy of the statement to its co-text by 

indicating the symbols to which the text is orienting. As such it locates the statement within 

its co-text. Accordingly, the Theme tends not to be something completely new within the 
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text, but something that has been mentioned previously, either in the mathematics, language 

or other resources such as images. In Text 3.1(a) the three Themes all refer to weight (Wearth, 

WMars, and Loss of weight) which is what the question asks to be calculated. Moreover, Wearth 

and WMars distinguish themselves by their subscripts that refer back to the Circumstances of 

location at the beginning of their section: On the earth and On Mars respectively. As we can 

see, the mathematical Themes are not pulled out of thin-air; they are related to the previous 

co-text. The Themes are used to emphasise the angle of the field to which the statements are 

orienting. Labelling this function Theme emphasises the similarity with Theme in language, 

in regard to their relative stability and co-referentiality with previous co-text (c.f. Fries 1981 

for English and Fang et al. 1995 for Chinese). 

The right-hand side of the statements poses more challenges. It clearly performs a different 

function from Theme in that it expands the text and involves continual change. To 

distinguish it from Theme, we will use the term Articulation. More precisely, the 

Articulation includes the relator (such as =) and the following expression. The Theme-

Articulation structure of one of the sections in Text 3.1 is thus: 

 

                

Theme Articulation 

 

(      )         

Theme Articulation 

 

(      )                  

Theme Articulation 

 

The Articulation is an explicit elaboration of the Theme. Whereas the Theme orients the text 

to its field, the Articulation is more oriented toward genre staging. It shows the progression 

of a mathematical text from its beginning to its final result. The term Articulation is used to 

emphasise its difference with the English Rheme (Halliday and Matthiessen 2014). Rheme 

in English has a minimal effect on the textual patterns of English, aside from not being the 

Theme. The Articulation, on the other hand, plays a significant role in its own right. The role 
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of the Articulation will be discussed in more detail in section 3.4.2.3 and in Chapter 4. 

However before this, we first need to introduce another aspect of mathematical statements, 

its univariate organisation. 

 

3.4.2.2 Statements as expression complexes 

The analysis of statements into Theme and Articulation allows an insight into the strong 

tendency for statements to organise their left and right side differently. However, as noted 

above, this is only a tendency. Aside from the thematic organisation, there is free variation 

as to what can be put on the left and right side;               and               are 

both grammatical statements. As well as this, there is a sense in which the two equations are 

in some sense the same. That is, the logical relations between the expressions and the 

symbols within it are the same. By analysing the statement purely as a Theme^Articulation 

structure, this similarity is not brought out; the only aspect shown is their difference. This 

section will be concerned with accounting for this similarity by developing a complementary 

structural configuration. 

If taking a notionally metafunctional view of mathematics, the similarity between      

and      is in their ideational meaning, as opposed to the textual meanings shown by 

distinct Theme and Articulation choices. To understand the ideational meanings of the 

statement, O’Halloran suggests a Token-Value structure for the statement (2005: 106), akin 

to relational identifying processes in English (Halliday and Matthiessen 2014). This Token-

Value structure is independent of the Theme-Articulation structure, resulting in the analyses: 

 

(3:27) 

F = ma 

Token  Value 

Theme Articulation 
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 (3:28) 

 

 

Providing a Token-Value structure complementary to the Theme-Articulation structure 

brings out both the similarities and differences between the above equations, however it 

raises a number of other issues. First, distinguishing Token from Value implies two orders 

of abstraction, a distinction difficult to justify in mathematics. More importantly, however, it 

raises the question of how to distinguish Token from Value. O’Halloran’s analysis makes it 

clear that sequence is not criterial, via the following examples (2005: 106-107): 

 (3:29) 

 

 
 

 

 
 

 

 
 

=            

   
 

Value  Token 

  

 (3:30) 

           

   
 

=  

 
 

 

 
 

 

 
 

Token  Value 

 

 

Her suggested probe for distinguishing Token from Value is to determine which expression 

would be the Subject in the active if = was translated into an English relational process, such 

as: 
           

   
 represents 

 

 
 

 

 
 

 

 
 (Token is the Subject in the active is a probe for 

English from Halliday and Matthiessen 2014, Martin et al. 2010). For mathematics, this 

probe suffers from two shortfalls. The first is the problem of arguing from a translation. 

Languages and semiotic resources organise their meanings in distinct ways. If we wish to 

bring out the specific organisation of each resource in their own terms, translation will tend 

to neutralise the specific patterns of that resource. In other words, by translating 

ma = F 

Value  Token 

Theme Articulation 
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mathematics to English and arguing from English probes, mathematics will inevitably begin 

to look a lot like English. The second issue is more pragmatic. It is not clear why 

           

   
 represents 

 

 
 

 

 
 

 

 
 is preferred to 

           

   
 is represented by 

 

 
 

 

 
 

 

 
. 

Which of these forms is appropriate is not readily apparent, significantly undermining the 

probe. It is possible that the number of symbols in each expression could be used as a probe, 

however this begs the question as to what to do when there are the same number of symbols 

on each side. 

Without a clear set of criteria for distinguishing Token and Value, it is thus not obvious 

which expression is Token and which is Value in each of the following statements: 

 (3:31)          

 (3:32)          

 (3:33)  
  

 
    

 (3:34)     
  

 
 

 (3:35)    
  

  
 

 (3:36)  
 

  
 

 

  
 

A larger issue for a Token and Value analysis, however, is what to do with statements that 

involve more than two expressions, including examples like the following: 

 

 (3:37)           

 (3:38)    
 

 
 

     

                

 

With more than two expressions, a simple binary analysis is difficult to apply without 

significant embedding. One possibility could be to consider these equations as being realised 

by iterative Token-Value structures. In this case, each Value aside from the last would be 

conflated with a Token. An analysis of equation 3:38 above, under these terms, would then 

be: 
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  =  

 
        

         
 

        

Token  Value/Token  Value/Token  Value 

 

The possibility for indefinite iteration of the Token-Value structure, however, indicates that 

it might be better to approach the statement from a different point of view. 

A Token-Value distinction is based on a multivariate analysis (Halliday 1965), entailing that 

each expression performs a distinct function that isn’t repeated. An alternative is to view the 

statement from a univariate perspective as involving a single function repeated indefinitely 

(see Section 2.1.2 for a more detailed discussion of the multivariate/univariate distinction). 

In this analysis, each expression would fulfil the same structural role, with the labelling 

simply being used to distinguish them in sequence. To distinguish this analysis from that for 

symbols within expressions, the numbers 1, 2 etc. will be used, ordered from left to right 

(following Halliday and Matthiessen’s 2014 notation for parataxis). This produces the 

analyses: 

 

 (3:39) 

F = ma 

1  2 

  

(3:40) 

ma = F 

1  2 

 

 (3:41) 

   =    =   

1  2  3 
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 (3:42) 

  =  

 
 =      

         
 

        

1  2  3  4 

 

It must be stressed that assigning expressions 1 or 2 or any other number, does not indicate 

any sort of prominence with respect to the others. Although a taxis distinction is not being 

made in this description, the sequencing of expressions in statements is more akin to 

parataxis rather than hypotaxis, in that the expressions each have the same status. More 

accurately, we could assign each expression the same label, say X and use subscripts for 

sequencing (see Halliday 1965), as in: 

 (3:43) 

  =  

 
 =      

         
 

        

X1  X2  X3  X4 

 

However for ease of tracking, and to distinguish this notation from symbols within 

expressions using ,  etc., we will use 1, 2, 3 etc. 

A univariate analysis such as this indicates that each expression performs the same function 

and has the same status. This means that the ordering of the expressions is immaterial for the 

analysis. In this way, it brings out the similarity between      and     . Both 

equations link two expressions with exactly the same structural function. Analysing these 

equations for both their univariate structure and their Theme^Articulation structure allows 

the following tiered structures: 

 

 (3:44) 

F = ma 

1  2 

Theme Articulation 
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 (3:45) 

ma = F 

1  2 

Theme Articulation 

 

Again we must stress that the labelling of 1 and 2 indicates nothing more than their sequence 

in the syntagm, not their structural relationship. The F in (3:44) plays the same function as 

the F in (3:45), which is the same function as ma in (3:44) and ma in (3:45). The meanings 

made by their sequence are accounted for in the Theme-Articulation structure discussed in 

the previous section. 

Positing a univariate structure for statements provides an avenue for describing statements 

including more than two expressions. Univariate structures are, in principle, indefinitely 

iterative; they allow any number of expressions to be placed in sequence, making the 

description of extended statements a simple affair. Further to this, the issues surrounding 

how to justify which expression performs which function that occur with a Token-Value 

distinction are neutralised with labelling determined purely by sequence. 

Viewing the statement through a univariate lens produces an analysis whereby statements 

are simply expression complexes. The minimal statement is thus an expression complex 

with two expressions, as in: 

 

F = ma 

1  2 

expression  expression 

 

This has affinities to the discussion in Section 3.4.1 above where expressions were 

considered symbols complexes. If statements are expression complexes and expressions are 

symbols complexes, we can say that statements are in essence highly elaborated symbol 

complexes. This has implications for the levels structure in mathematical symbolism and 

will be taken up in detail in Section 3.4.4. 
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Now that the basic univariate organisation of statements has been outlined, we need to 

address the question of what to do with the Theme-Articulation structure in extended 

statements with more than two expressions. Following this, we will consider the 

paradigmatic organisation of statement types. 

 

3.4.2.3 Articulations revisited 

The Theme-Articulation structure for statements is a multivariate structure whereby each 

expression in a two-expression statement performs a distinct function. This will be justified 

in more detail in the following chapter once genre has been introduced. Up to this point we 

have said that the choice of Theme is more oriented toward field, whereas the choice of 

Articulation is oriented toward genre. To focus on this, we will look again at Text 3.1, 

reproduced below: 

Calculate how much weight a 50kg girl would lose if she migrated from the earth to a colony 

on the surface of Mars. 

Answer 

On the earth: 

 

               

        

                 

On Mars: 

 

              

        

                 

 

 Loss of weight = 490 – 180 = 310 N. But there is no loss of mass! 

Text 3.1 de Jong et al. (1990: 249) 

The Themes of each set of equations hold the focus on the field stable, which angles in on 

the technicality weight. The Articulations in the first two sections under On the earth and On 

Mars show a steady progression from symbolic relations to their final numerical form - 

quantifying the weight of the girl on each planet. In the first two sections, each equation 

contains only two expressions so the Theme-Articulation analysis is relatively 
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unproblematic. It is the final equation in the final line, however, that we wish to focus on 

now
29

:  

 (3:46)  Loss of weight = 490 – 180 = 310 N 

The Theme, Loss of weight, continues the angle on the field by the previous equations. 

Building upon this, the following two expressions show a distinct progression similar to the 

previous sequence of equations. The second expression,        , gives two numbers 

taken from the results of the previous sections (490 from the final line of the On the earth 

section, 180 from On Mars). The third expression, 310 N, gives the final result of the 

calculation of        . The ordering of the two expressions is important. The entire 

statement realises a short quantification genre (discussed in the following chapter), of which 

the final expression correlates with the stage that is the nucleus of the quantification, known 

as the Numerical Result. The previous expression,       , realises another, optional, 

stage called Substitution. As with all genre staging, Numerical Results and Substitutions are 

realised by a distinct pattern of grammatical features.
30

 Furthermore, the order of the staging 

is strict: if they occur, Substitutions will always precede Numerical Results. Looked at from 

the point of view of genre, then, the ordering of the second and third expressions is not 

arbitrary. It is tightly determined by the generic staging. 

Looked at from within the grammar, there is a sense in which the third expression follows 

on from and is in some way logogenetically dependent on the second expression. The       

is calculated from the subtraction of 180 from 490 shown in the second expression. 

Although in principle, the expressions can be swapped (accounted for by the univariate 

organisation described above), in practice the ordering has definite meaning for the 

logogenetic unfolding of the text - and is thus tightly constrained. For this reason, the 

analysis proposed here will not take the entire set of expressions and relators following the 

Theme as a single function (akin to the Rheme in English); rather each expression and 

relator pair will be given a distinct function. As there is the potential for an indefinite 

number of expressions in sequence, there is an issue for labelling. To surmount this, we will 

                                                           
29

 Loss of weight in the Theme of the statement is a single symbol for the purpose of the grammar of 

mathematics. Why a linguistic nominal group is being used rather than the usual single Roman or Greek letter is 

a matter for a more inter-modal study. 
30

 As to this point we have only considered the grammar and not the possibility of register, discourse semantics 

or any other strata, we are necessarily skipping any stages of realisation that these strata would mediate. 
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call the functions Articulation1, Articulation2, Articulation3 etc
31

. The analysis would thus 

become: 

 

 (3:47) 

Loss of weight                 

Theme Articulation1 Articulation2 

 

 (3:48) 

          

Theme Articulation1 Articulation2 

 

 (3:49) 

   
 

 
  

     

         
 

       

Theme Articulation1 Articulation2 Articulation3 

 

By allowing the non-thematic sections of the statement to unfold as different functions, 

further justifications can be made for distinguishing Articulations from the Rheme of 

English. First, on purely structural grounds, within a single clause in English, there can be 

only one Rheme, and the Rheme includes everything that is not the Theme. Second, the 

position of groups within the Rheme has no effect for the thematic structure; the position of 

New, most often contained with the Rheme, is organised by separate system within the 

information unit (Halliday and Matthiessen 2014, Halliday and Greaves 2008). In 

mathematics, on the other hand, the ordering of Articulations does have meaning for this 

strand of structure. Thus, whereas the Theme is labelled as such to emphasise the similarity 

to Theme in English and other languages, Articulation is labelled to emphasise its difference 

with Rheme. 

                                                           
31

 This is similar to the labelling convention for higher levels above MacroTheme in the hierarchy or periodicity 

for English, being labelled MacroTheme
i
, MacroTheme

ii
, MacroTheme

iii
 etc. (Martin 1992b, Martin and Rose 

2007). This is not however to suggest a periodic structure in the mathematical statements. 
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As noted above the Theme-Articulation is a multivariate structure. Each function performs a 

distinct role and occurs only once. The possibility for indefinite iteration of expressions, 

with all except the thematic expression being labelled Articulation, calls into question this 

characterisation. In one sense, this is purely an issue of labelling. If each subsequent 

expression was labelled something completely different to all others, the structure would 

look more comfortably multivariate; this nomenclature however would become very 

unwieldy very quickly. Unlike the 1, 2 labelling of the univariate structure, the numbering of 

labels is intended to show a distinction in the status of the Articulations; they do not all 

perform the same function. In a second sense, however, the potential for iteration and the 

fact that they do all correlate with genre, suggests that the system is not strictly multivariate. 

Halliday, in introducing hypotaxis and parataxis (1965), suggests that due to its ability for 

iteration coupled with its ordering of status in dependency relations, hypotaxis sits in an 

intermediate position between the prototypically univariate structure of parataxis, and 

strictly multivariate structures. It is this position that I will take with the ordering of 

Articulations. At various points in this description, we will see tensions between a 

multivariate and univariate interpretation, with the line being drawn determined by the 

concerns of the specific area being described. More generally, however, this raises the issue 

of how clearly we can distinguish multivariate from univariate structures, and whether we 

should instead consider it as cline between two poles. 

The previous three sections have focused on statements from the point of view of its 

syntagmatic structure. It was shown that it can be successfully modelled as a univariate 

structure, with some multivariate features arising from its interaction with genre and field. 

The following section will focus on the paradigmatic organisation of statements, in 

particular developing the system determining different types of relator and the recursion 

implied by a univariate analysis. 

 

3.4.2.4 Systemic organisation of statements 

To this point, the illustrative texts have only used equations with the equals sign =. This is 

by far the most common relator in the data, but it is only one of a dozen distinct types. 

Throughout the corpus, a number of other relators are used in statements. For example text 

3.3 from a senior high-school textbook uses the proportional sign  in three statements to 
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encapsulate the technical meaning of ‘proportionality’ built up in the verbal co-text. The 

progression eventually concludes with an equation using = : 

 

 Newton’s Second Law 

As mentioned earlier, this law is one of the most important laws in physics and relates force, 

mass and acceleration. You know from your own experience that if you apply the same force 

to a ‘heavy’ object such as a car and ‘lighter’ object such as a pushbike, the bike moves off 

more easily, that is, it accelerates more. 

Experiments over hundreds of years prove that, for a constant force, the acceleration is in 

fact inversely proportional to the mass: 

that is,   
 

 
 

For a constant force, this means that as the mass increases, the acceleration decreases. For 

example, doubling the mass of an object results in a halving of the acceleration. 

Similarly, experience tells us that the more force we apply to an object (that is, the ‘harder’ 

we push), the greater the acceleration of that object. Experiments prove that for a constant 

mass, the acceleration is proportional to the force: 

that is,  ⃗   ⃗ 

For the same mass, increasing the force increases the acceleration in proportion. For example 

doubling the force doubles the acceleration. 

Combining these relationships, we have: 

   ⃗  
 ⃗

 
 

Newton’s Second Law can hence be stated as follows: 

The acceleration of an object is directly proportional to the unbalanced force acting on it 

and is inversely proportional to its mass. 

 

Rearranging this relationship we can write:  ⃗     ⃗ where k is the constant of 

proportionality. 
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By a suitable choice of units (see below), k can be made equal to 1, so this equation reduces 

to: 

 ⃗    ⃗ 

 

It must be stressed that  ⃗ is the resultant (or net or unbalanced) force acting and Newton’s 

Second Law is sometimes written as ∑  ⃗    ⃗ to emphasise the resultant nature of the force. 

Text 3.3 Warren (2000: 114-115) 

 

The first year university student exam response in Text 3.4, on the other hand, uses < and > 

(glossed as smaller-than and greater-than) as the relators in statements within each 

response’s linguistic Circumstance of location. These are used to specify the conditions 

under which the following equation or linguistic response applies: 

 

a) i) for    ,      

ii) for      ,    
 

        

iii) for    ,     

 

for    , there is an enclosed charge, therefore, according to guasses law, no net 

flux in the sphere and hence no electric field. 

            
    

    
 

 
   

    
 

 
 

       
 

for    , there is no net charge on the outside of the sphere, hence no electric field. 

 

Text 3.4 University student response 

 

Clearly any description of the mathematics used in these texts must account for relators 

other than =. It is possible these relators pattern differently across registers, and play 

particular roles in the interaction with language and other modalities. Indeed Text 3.4 above 
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shows a distinct separation of functions between the inequalities > and <, and the equals =. < 

and > were used to signpost phases of the text as part of linguistic Circumstances of location 

fronted to become marked Theme. Statements using the = sign, on the other hand, provided 

the news for each phase. 

This section will thus be concerned with building a system that accounts for the different 

statements used in texts and the relators that realise them. Table 3.4 outlines the statement 

types and relators that will be described. 

 

Statement type Relator Example 

equation =     

identity       

similar ≈     

order of magnitude ∿     

proportionality      

inequation       

greater than >     

smaller than <     

greater than or equal       

smaller than or equal       

much greater than       

much smaller than       

 

Table 3.4 Statement Types 

 

As discussed above, each statement includes an expression labelled 1 and another labelled 2, 

with a relator linking them. To account for their sequencing, we will now consider the 

Relator to be a function (and label it with initial capitals appropriately), and sequence it with 

the expressions. Following Halliday’s conventions for complexing (Halliday and 

Matthiessen 2014), analysis of statements will show the Relator as a superscript between 

each expression. As well as this, for convenience, we can replace the word Relator with the 
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character standing for the statement types. That is, we can analyse     by inserting a 

superscript   between the 1 and 2, as in 1

2. 

Different statement types are most obviously distinguished by their choice of Relator: =, >, 

~,   etc. A focus entirely on Relators, however, gives only a partial picture. Each Relator 

sets up a relation between two expressions and in doing so, coordinates the potential choices 

that can occur between those expressions. That is, by choosing a particular Relator, the 

entire expression complex is affected. We can see this, for example, by distinguishing 

between = and >. Statements involving = can reverse the ordering of their expressions, 

changing only Theme-Articulation structure:      is the same as     . For > 

(glossed as greater than), however, this cannot occur.     is not the same as    . To 

translate into English, the first statement is saying a is greater than b and the second is 

saying b is greater than a. We can show this distinction purely within the mathematical 

system by inserting numbers: taking a as 7 and b as 5, we can say    , but not *    . 

Relators are thus only the most obvious manifestations of a set of characteristics of a 

statement; they are the phenotypic marking associated with a number of other less explicit 

reactances. 

To develop the system, we can begin with the distinction made above – namely between 

statements that can reverse their expressions (referred to as [symmetric] and including =, ~, 

 , ,   and ≈), and statements that order their expressions in terms of magnitude (referred to 

as [magnitudinal] and including >, <, ≥, ≤,   and  ). This primary system is shown by 

Figure 3.5. 

 

Figure 3.5 Primary delicacy of STATEMENT TYPE 
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We will begin by focusing on [symmetric] statements. The first distinction within symmetric 

statements sees [inequation], realised by the Relator   and glossed as not equal to, set 

against all other [symmetric] statements. The key characteristic distinguishing [inequation] 

from the others is its lack of reflexivity. In mathematics, the property of reflexivity indicates 

that the same expression can occur on both sides of the Relator. Thus, inequations may not 

have the same expression on both sides, while all other symmetric statements may: 

 

 (3:50)  *    

 (3:51)      

 (3:52)      

 (3:53)      

 (3:54)      

 (3:55)      

 

Statements that may have the same expression on both sides will be called [reflexive]. 

Within [reflexive] we can distinguish [proportionality] from a set of Relators that include ~, 

 , =,   that we will call [alike]. Notionally, [alike] statements all show that the expressions 

on either side are in some way similar; they are either exactly equal as in = and  , or 

approximations as in ~,  . On the other hand, [proportionality], realised by the Relator  , 

does not necessarily indicate this. Rather, it shows that a change in the variables in one 

expression will necessarily be accompanied by a change by those in the other expression. As 

it deals with change, it would be odd for [proportionality] to include expressions that do not 

contain a variable symbol, (i.e. to only include a numeral such as 4, 7 etc. or a constant such 

as π; see Section 3.4.5 for the distinction between numerals, constants and variables). This 

means that     is acceptable, whereas     is odd at best. [alike] statements do not have 

this restriction and regularly contain only constants or numbers in their expressions. 

The final four [symmetric] statement types, all within [alike], can be distinguished between 

those that show exact equality, = and  , and those that show an approximation, ~ and  . 
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Mathematically, [exacts] are transitive whereas [approximations] are not. In mathematics the 

property of transitivity indicates that if, for example,     and    , it is necessarily the 

case that    . For [approximations] this is not necessarily the case: if     (glossed as a 

is approximately equal to b) and    , it is not necessarily the case that    ; a series of 

small differences can make a big enough difference that two variables are no longer 

approximately equal. [exact] includes [equations] realised by =, and [identity] realised by  . 

Identities ( ) are rarely used, however when they are, it tends to indicate that the relation is 

a definition of some sort and is technical in the field. An example from university course 

notes shows a definition of κ and λ: 

 (3:56)     
 

 
     (

 

  
 
 

 

  
 
) 

[approximation] includes two Relators: ~ and  . The use of these Relators is by no means 

fixed, and appears to be somewhat idiosyncratic in hand-written work. A broad distinction 

can be made, however, between ~ which tends to shows that the two expressions are within 

one order of magnitude with each other (within around ten times the other), while   

generally suggests closer similarity. 

The full network for [symmetric] statements is shown in Figure 3.6. 

 

Figure 3.6 Network of symmetric statements 

 

Opposed to [symmetric] statements is the category [magnitudinal]. These statements order 

their expressions in terms of their magnitude. Two sets of contrasts characterise 
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[magnitudinal] statements. The first indicates whether the left side of the Relator is greater-

than (>) or smaller-than (<) the right. The second indicates whether the two expressions 

have the potential to be equal or not. If they may not be equal, they are known as [strict] (e.g. 

>), whereas if they may be equal, they are [non-strict] (e.g.  ). This sets up two 

simultaneous systems: [greater-than]/[smaller-than] and [strict]/[not-strict]. Within [strict] 

statements, there is a further distinction between whether the Relator indicates a large 

difference or not. Table 3.5 shows a paradigm of magnitudinal statements with their Relators 

and English glosses. 

 

 greater-than smaller-than 

 

 

 

strict 

 

large 

difference 

 

  
 

much greater than 

 

  
 

much smaller than 

 

not large 

difference 

 

  
 

greater than 

 

  
 

smaller than 

 

 

not-strict 

 

≥ 

 

greater than or 

equal to 

 

≤ 

 

smaller than or 

equal to 

 

Table 3.5 Paradigm of magnitudinal statements 

 

It was noted above that the feature distinguishing between [symmetric] and [magnitudinal] 

statements is that [symmetric] statements can reverse their expressions without changing 

their Relator, whereas [magnitudinal] statements cannot. This characteristic does not 

preclude [magnitudinal] statements from allowing a shift in Theme, however. Changing 

Theme in [magnitudinal] statements by swapping the expression is coupled with a shift in 

the GREATER-SMALLER system - via swapping from [greater-than] to [smaller-than] or vice 

versa. Equations (3:57-62) show the shift in Theme and the concomitant change in Relator 

in [magnitudinal] statements. 
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 (3:57)       

 (3:58)      

 (3:59)      

 (3:60)      

 (3:61)      

 (3:62)      

The system distinguishing between [greater-than] and [smaller-than] is thus a system geared 

toward shifts in Theme. This is not dissimilar to the systems that distinguish ‘like-type’ and 

‘please-type’ mental processes in English (Halliday and Matthiessen 2014: 247-248); the 

ideational meanings can be held the same while the thematic structure varies. Figure 3.7 

shows the options within [magnitudinal] statements. 

 

Figure 3.7 Network of magnitudinal statements 

 

Like [symmetric] statements, [magnitudinal] statements can be indefinitely iterative. Indeed 

it is possibly more common for [magnitudinal] Relators to occur in three-expression 
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statements than [symmetric], as they often specify the boundaries within which an equation 

holds. An example from Text 3.4 above shows this: 

 

  (3:63)   for      ,     
 

        

 

      shows the upper and lower limits within which the equation   
 

       
 holds: 

above     and below    . 

The recursion of expressions is thus simultaneous with the entire system of STATEMENT-

TYPE. Each time a new expression is added, a new Relator is coupled with it. This Relator 

and expression pair is essentially a new Articulation, so we can characterise the extension of 

statements are rearticulations. This label also captures the extension of statements as 

indicating genre progression, precisely what Articulations tend to correlate with. This 

recursive system is modelled as Figure 3.8. 

 

Figure 3.8 Rearticulation of statements 

 

Note that in order to model the paradigmatic choice of which symbols realise the Theme and 

which realise the Articulations, Theme preselects the feature [thematised] in the level below 
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and Articulation preselects [articulated]. These choices will be modelled within the symbol 

network further into the chapter. 

We can now put together the network for statements as it currently stands, shown as Figure 

3.9. 
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Figure 3.9 Partial network of statement
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3.4.2.5 Relations across symbols in statements 

It was discussed earlier in the chapter that part of the justification for developing a univariate 

structural analysis was in order to account for the similarity of statements that have their 

expressions swapped around: 

 (3:64)       

 (3:65)       

By positing a univariate structure, the two expressions could be shown to hold the same 

function. Aside from the Theme/Articulation distinction, the univariate structure indicated 

the two statements were the same. It is fruitful to ask whether we can go one step further and 

suggest the similarity of statements that change the Theme not simply by swapping the 

expressions, but also by reorganising the symbols within expressions. That is, to show the 

similarity in the grammar among: 

 

 (3:66)       

 (3:67)    
 

 
 

 (3:68)    
 

 
 

 (3:69)       

 (3:70)  
 

 
   

 (3:71)  
 

 
   

 

In each of these statements, the symbols remain the same but their relations within each 

expression differ. Across the entire statement, however, the relations between the symbols 

do in some way hold stable, in the sense that each can be reorganised to produce the other. 

O’Halloran (2005: 108) observes that despite the rearrangement of the above equations the 

relationships between each symbol are preserved. This is an important insight, one that is 

worth pursuing.  It is also, however, one that puts forward challenges for the description. If 
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we want to allow for free choice of Theme, (i.e. we want to allow the expression functioning 

as Theme to have any symbol or any number of symbols in it), then we must allow for 

equations like (33:66-71) to be similar in some way. To do this, we can return to a 

characterisation of statements suggested in Section 3.4.2.2: statements are expression 

complexes and expressions are symbol complexes. Thus we can ultimately view statements 

as symbol complexes. Looked at from the point of view of the symbol (from ‘below’, as it 

were), the statement is simply a set of relationships between symbols. In this view, equations 

(3:66-71) keep the overall symbol complex the same, but simply change the thematic focus. 

Explicitly generating this similarity, however, is a significant challenge. It is clear that 

although we wish to maintain the relations between each symbol across the statement, the 

binary operations (+, -, ÷ etc.) within expressions are different. Thus, in order to maintain a 

hold on the similarity, a system must be put forward that shows logical relations between 

symbols remaining constant when both an equation is being rearranged and the binary 

operations within expressions are being changed. The key test as to whether these relations 

remain constant between two equations is whether one equation can be rearranged to 

become the other. Taking the equations above, we can describe the relations between F, m 

and a through two distinct features: 

 The pairs F and m, and F and a, are both proportional
32

: as one in the pair 

increases, so does the other at the same rate. 

 m and a are inversely proportional: as one increases, the other decreases at 

the same rate. 

With just two relations, proportional and inversely proportional, we can account for the 

similarity of equations (3:66-71). Across these equations, the thematic structure and the 

binary operators within expressions change, but the proportional/inversely proportional 

relations remain the same. Structurally, the relations appear to be similar to the covariate 

structure indicated by Lemke (1985) for thematic systems (distinct from thematic structure 

discussed above) and Martin (1992a) for IDENTIFICATION in discourse semantics (see Section 

2.1.2 for an introduction to covariate structures). They show a set of relations that each relate 

two symbols at a time, whereby a change in one necessarily shows a change in the other. 

                                                           
32

 The use of proportional here is distinct from, though related to, the proportionality Relator:  
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Each covariate relation is in some way tied to or constrains the possible binary relations 

between symbols in expressions. For example, taking the relations shown between F, m and 

a above, the fact that F and m, and F and a are proportional, while m and a are inversely 

proportional, restricts the possibilities for how these symbols are related in equations. Using 

only these symbols, the only equations that can show these relations are (3:66-71). Any 

other configuration, such as   
 

 
 or   

 

 
, does not conserve these relations. Utilising the 

rules of mathematics, these two equations cannot be ‘rearranged’ to produce any of the 

equations in (3:66-71) 

Notably, the two covariate relations we have specified so far, proportional and inversely 

proportional, necessitate that only division or multiplication are used in the equations 

between these three symbols, e.g.      and   
 

 
. If addition or subtraction are used, 

they form different relations between the symbols. For example if we had the equations 

(3:72-73) below, neither could be rearranged to produce (3:66-71) above. 

 (3:72)         

 (3:73)         

This tells us that in some sense the covariate relations between the symbols in these 

equations are different to those in (3:66-71). Changing equation (3:72) or (3:72) to one of 

(3:66-71) does not preserve the configuration of relations. There are, however, similarities 

that we can consider. In both (3:66-71) and (3:72-73) when either a or m increases, F also 

increases. Similarly, in both sets of equations, when a increases, m decreases. This is a 

generalisation we will pick up below. The difference between the two is the rate at which 

each symbol increases or decreases in relation to the others. As mentioned above, the 

relation between F and a, for example, in (3:66-71) (e.g.     ) is that of proportionality. 

This means that as a increase, F increases at the same rate; the increase of one will be a 

constant multiple of the increase of the other. We can see this in (3:74-76). By keeping m 

constant as 2, and increasing a in intervals of 5, in the equation     , F increases in 

intervals of ten. That is, F increases at two times the increase of a. 

 (3:74)  If    ,           

 (3:75)  If     ,            
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 (3:76)  If     ,            

 

Looking in terms of grammatical reactances, symbols that are proportional can be related by 

the Relator  , e.g.    . In contrast, the relation between F and a in       is not-

proportional. Although they are similar in the sense that if one increases, so will the other, 

the increase of each is not a constant multiple of the other. Rather, the increase is precisely 

the same number. For example if a increases by 5, F will also increase by 5, as shown in 

(3:77-79) (again keeping m equal to 2). 

 (3:77)  If    ,          

 (3:78)  If     ,            

 (3:79)  If     ,            

  

We can thus make a distinction between relations that show proportionality (shown between 

F and a in equations (3:66-71) and (3:74-76)) and those that do not show proportionality 

(shown between F and a in (3:72-73) and (3:77-79)). We can also cross-classify these 

relations by whether both symbols increase together, or whether as one increases the other 

decreases. If they increase together, they will be considered to have a direct relation. For 

example, as a increases in     , so will F. Thus, they are directly related. As we have 

seen, they are also proportional (they increase at the same rate); their relation is thus directly 

proportional. On the other hand, in the same equation, the relation between m and a, 

although proportional, is such that as one increases, the other decreases. We will term this 

relation an inverse relation. In     , therefore, m and a are inversely proportional. The 

direct and inverse distinction also occurs for non-proportional relations. In      , F 

and a increase together but are not proportional, and so their relation will be termed directly 

non-proportional. In the same equation (possibly best seen in the form      ), 

however, as a increases, m decreases but again they are not proportional. Thus the relation 

between a and m in this case is termed inversely non-proportional. We can thus set up a 

simple network showing the cross-classification of these relations, in  3.10. 
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 3.10 Systems of PROPORTIONALITY and DIRECTIONALITY 

To formalise these covariate structures, each symbol involved in a proportional relation will 

realise a function labelled P. Those realising a non-proportional relation will be indicated by 

an N. Direct relations will be indicated by two upward point arrows, ↑↑, while inverse 

relations will be one up, one down, ↑↓. Thus, in     , the directly proportional relation 

between F and a is indicated by P↑↑P, while the inversely proportional relation between a 

and m is indicated by P↑↓P. In      , the direct non-proportional relation between F 

and a will be shown by N↑↑N, while the inverse non-proportional relation between m and a 

will be shown by N↑↓N. 

The nature of the covariate relations in mathematics is that in a single equation, each symbol 

is related to every other symbol. As well as this, however, each symbol is related to every 

possible symbol complex (their possibility determined by whether the equation can be 

rearranged to show that symbol complex), and each possible symbol complex is related to 

every other possible symbol complex. This quickly produces a large set of relations in only a 

small amount of space. Taking     , for example, F is related to both m and a 

individually (as we have seen), but it is also related to ma as a single symbol complex. In 

this case, as F increases, so does ma at the same rate: F and ma are directly proportional. 

Similarly, this equation implies that m is related to each of a and F, as well as the complex 

of F and a (shown by 
 

 
), and a is related to each of F and m and the complex of F and m (

 

 
). 

The full set of covariate relations indicated by the equation      is shown in Table 3.6. 
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    P↑↑P directly proportional 

    P↑↑P directly proportional 

     P↑↑P directly proportional 

    P↓↑P inversely proportional 

  
 

 
 P↑↑P directly proportional 

  
 

 
 P↑↑P directly proportional 

 

Table 3.6 Covariate relations shown by     . 

 

In the scheme of things,      is a relatively simple equation. As the table shows, it sets 

up only six covariate relations. With every addition of a symbol and its corresponding binary 

relation, however, the number of covariate relations increases dramatically. Adding one 

symbol to the above equation to produce       , for example, results in the fifteen 

covariate relations shown by Table 3.7. 
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       P↑↑P directly proportional 

     N↑↑N directly non-proportional 

    N↑↑N directly non-proportional 

    N↑↑N directly non-proportional 

    N↑↑N directly non-proportional 

       P↑↑P directly proportional 

     N↑↓N inversely non-proportional 

    N↑↓N inversely non-proportional 

    N↑↓N inversely non-proportional 

  
   

 
 P↑↑P directly proportional 

      P↑↑P directly proportional 

    P↑↓P inversely proportional 

  
   

 
 P↑↑P directly proportional 

      P↑↑P directly proportional 

       P↑↑P directly proportional 

 

Table 3.7 Covariate relations shown by       . 

 

The sheer complexity of these relations is the basis for much of the power of mathematics. 

In Chapter 4, we will see how these relations are used to develop new and previously 

unspecified equations, which in turn allow the development of further technical meaning. In 

Chapter 5, we will consider these relations as the basis of field specific ‘implication 

complexes’ realised through mathematics. In both cases, these relations will be shown to 

have great power for the knowledge base of physics. Looking purely grammatically, 

however, specifying these relations allows us to show the similarity between the following 

equations (3:80-89) and account for the fact that anyone sufficiently trained in mathematics 

can easily rearrange any of them into any of the others. 
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 (3:80)         

 (3:81)         

 (3:82)         

 (3:83)         

 (3:84)    
   

 
 

 (3:85)  
   

 
   

 (3:86)    
   

 
 

 (3:87)  
   

 
   

 (3:88)         

 (3:89)         

  

Despite both the thematic structures at the level of statement and the binary operations at the 

level of expression changing in each equation, the covariate relations shown by Table 3.7 

remain the same. The system of covariate relations thus cuts across the extraordinary 

complexity in variation available in mathematical statements, to preserve the relations 

between symbols. 

So far we have only considered covariate relations that interact with the arithmetic binary 

relations of addition (+), subtraction (-), multiplication ( ) and division (÷). We can also set 

up relations shown by the exponentiation operations of roots, e.g. √ 
 

, powers    and 

logarithms      . Whereas the covariate relations presented above link two symbols or 

symbol complexes, those related to exponentiation link three. As was discussed above in 

section 3.4.1.2.2, the three exponentiation relations are all mutually definable as they 

provide a different angle on the relation between three symbols. This was shown by taking a, 

b and c as variables, and using as examples the numbers    ,    ,     .  

In this case, [power] relates a and b to equal c: 
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 (3:90)         [power] 

   e.g.        

 

[root] relates b and c to equal a: 

 

 (3:91)  √ 
 

    [root] 

   e.g. √  
 

   

 

[logarithm] relates a and c to equal b: 

 

 (3:92)           [logarithm] 

   e.g.          

 

From these we showed an equivalence relation between roots, powers and logarithms: 

                             √ 
 

                                   

 

As the three exponentiation operations relate the same variables, each can be rearranged to 

become the other. This sets up three functions in a covariate relation, that we will call the 

Base, Exponent and Power. These three functions are related such that: 

 

                   

  is equivalent to: 

  √     
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 is equivalent to: 

                      

 

We can now add these to the system of covariate relations developed above to complete the 

description of this section. We will group those relations involving two variables as types of 

dipole relation, while those involving three variables will be termed tripole. As there is the 

potential for multiple covariate relations to occur if more than one symbol is selected in an 

expression, we will once again insert a recursive loop. The network for covariate relations is 

shown in  3.11. 

 

 

 3.11 Network of covariate relations 
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This network is only a partial formalism of covariate relations. It does not specify the 

realisational and preselection relations between covariate relations and binary relations in 

the level below, nor does it account for the possibility of Relators other than =, nor the 

relations involved in the unary operations that will be specified in the following section. 

Formally modelling of each of these poses significant descriptive challenges. These arise 

from the interaction between covariate, univariate and multivariate structures and the levels 

derived from them. As such, they will be left for future development of the grammar. 

Nonetheless, with this system, we can now present the full system for the level of statement 

as  3.12.
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 3.12 Network of statement
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3.4.3 Multivariate structure of symbols 

The description to this point has considered the complexing relations between symbols that 

have built major features of the architecture of mathematical symbolism. It has revealed the 

way symbols complex into expressions, how expressions in turn complex into statements, and 

how these statements can be rearranged to produce distinct thematic structures. Returning to 

the example texts, we see there is still some variation that has not been accounted for in the 

description. An example of this is the use of subscripts to distinguish between different types 

of E (glossed as energy) at beginning of Text 3.5, a mathematical text written by the teacher 

on the white board in a high school physics class: 

 

                               

                

                

        

               

                         

Text 3.5 High School Classroom Whiteboard. 

This text is concerned with calculating the energy E when an electron moves between two 

levels in a hydrogen atom. To do this, it distinguishes between four different instances of 

energy:    and   , glossed as the initial and final energy during a transition,         , the 

energy emitted in a transition between two levels, and     , the energy emitted specifically 

in the transition between level 3 and level 2. The subscripts indicate different instances of the 

same technical symbol. As well as the subscripts, in the first and the third line, the use of the 

Greek character   modifies E.   is usually glossed as change, so that       would be read as 

the change in energy from 3 to 2. This character is related to other modifications such as the 

trigonometric functions sin and cos shown in bold in Text 3.6, from a senior high school 

textbook: 
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 A car of weight 20,000 N rests on a hill inclined at 30 degrees to the horizontal. Find the 

component of the car’s weight:  

(a) perpendicular; and 

(b) parallel to the plane of the hill. 

 SOLUTION 

 From  3.49 [not shown YJD] we see that: 

(a) The component of weight perpendicular to the plane is given by: 

 

            

                       

 

(b) Similarly, the component of weight parallel to the plane is given by: 

 

            

                       

 

Text 3.6 Warren (2000:117) 

 

Each of the characters above will be classed provisionally as different types of modifiers. 

There are numerous other modifiers that occur throughout the texts under study. Indeed, they 

form a valuable component of the discourse, performing a host of different functions within 

the texts. The justification for grouping the various modifications together is twofold. First, 

these characters cannot sit on their own in an expression. That is, each of (3:93-95) is 

ungrammatical: 

 (3:93)  *    

 (3:94)  *      

 (3:95)  *     

Second, binary operations cannot hold between the modifier and the head; each expression 

(3:96-98) is thus unacceptable: 
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 (3:96)  *    

 (3:97)  *      

 (3:98)  *    

 

These two characteristics distinguish modifiers from the symbols dealt with so far such as x, y, 

2, π etc. This sets up two distinct functions: those that can sit on their own in an expression 

and can be related to other symbols through binary operations, and those that cannot. 

Beginning with the subscript relation, e.g.   , we will call E a Quantity, and the subscript a 

Specifier. Thus we would analyse    as Quantity^Specifier. Quantity will be used for any 

symbol that can enter into a binary operation whether or not there is a Specifier. As the 

Quantity^Specifier structure contains two distinct functions that are not recursive, this 

relation is a multivariate structure. The multivariate nature of these functions is in contrast to 

most of the grammar described so far and has an impact on the overall architecture of 

mathematics. This, however, will be dealt with in Section 3.4.6 below. Before this, the 

different options for modifications will be mapped. 

We began with the Specifier above as it is the odd one out within the system to be developed. 

Specifiers can only modify a single symbol, such as    . They cannot modify symbols 

complexes, (i.e. *(  )  is ungrammatical), nor can they modify symbols involving other 

modifications: *(  )  . This is in contrast to other modifiers, such as sin and  , which can 

modify whole complexes, e.g.    (
   

 
) and  (  ⃗). As well as this, Specifiers can only 

modify pronumerical symbols, not numbers (i.e. they can modify E but not 5). This final 

feature is important as it necessitates a distinction between different elements that realise the 

Quantity, and will be dealt with in Section 3.4.5. For the reasons specified above, Specifiers 

will be split from the rest of the system as an optional feature. 

The other modifiers will be grouped as unary operations. Unary operations are similar to 

binary operations (+, -, ×) in that their insertion usually changes the value of the expression 

they are in. Unlike binary operations, however, unary operations only necessitate one symbol. 

The symbol that is being operated on we will call the Argument. The unary operator will take 

the function Operation. Thus, the modification of the number 3 with the unary operation sin 

to produce      will be analysed as Operation^Argument. We have mentioned previously 
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that a key feature of unary operations is that, although they can take a single symbol, they can 

also take a complex of symbols. That is, the Argument can be realised by a symbol complex. 

This means that    (
   

 
) would also be analysed as Operation^Argument. We can thus now 

further specify the distinction between unary and binary operations. Unary operations take a 

single Argument that could be realised by any number of symbols in a complex; binary 

operations, on the other hand, take two arguments (using the term informally), labelled  and 

, each of which could be realised by a single symbol or a complex of symbols. One final 

feature of unary operations is that they cannot modify all elements within an expression. 

Looking at the symbols in                , they can modify the F, 1, 10 and -2, but 

they cannot modify the ‘N’ or ‘west’. The ‘N’ indicates the units of F (force) and ‘west’ 

indicates the direction the force is moving in. We will term the symbols that can be modified 

by unary operations values. 

It is possible for a Quantity with a Specifier (a symbol with a subscript, such as   ) to be 

modified as a whole by a unary operation. For this reason, an expression such as       would 

have two function structures: one accounting for the Operation^Argument structure, and the 

other the Quantity^Specifier structure: 

 (3:99)   

             

Operation Argument 

 Quantity^Specifier 

 

 

We have now introduced all of the functions needed to account for the grammar of 

mathematics. It is worth pausing for a moment to show an example of a statement fully 

analysed for its functional structure (excepting covariate structures). To capture each of the 

functions, a constructed example will be used:      
  

   
    .  
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 (3:100)       
  

   
     

 

y = cos 
  

   
   0.5 

1 
=
2 

≈
3 

Theme Articulation1 Articulation3 

  Operation Argument   

Quantity   
(                  )

(                              )
  Quantity 

 

 

At the levels of statement and symbol, there are both univariate and multivariate structures. 

At the level of statement, the univariate structure is shown by 1
=
2

≈
3 and the multivariate by 

Theme^Articulation1^Articulation2. At the level of symbol, the univariate structure is shown 

within the second expression by 
 

 (     )
 and the multivariate by the Quantities, Specifier 

and the Operation^Argument sequence. 

Continuing the description, we have so far distinguished between Specifiers that modify 

Quantities and are shown by subscripts, and Operations that modify Arguments. To capture 

the fact that the structures Quantity^Specifier and Operation^Argument can enter into binary 

operations of multiplication, addition, division etc. we will now use the term symbol as the 

class label that includes the affixation of the modifiers onto the elements that realise the 

Quantity. That is, for example, symbol is used to capture the entirety of      . This is similar 

to the label word in English being used to capture the grouping of root morphemes with 

prefixes or suffixes. Reasoning thus, symbols are realised by Quantities plus optional 

modifiers. From this, we can map the initial distinction between Operation^Argument and 

Quantity^Specifier structures as types of symbol, as in the system network in  3.13. 
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 3.13 Primary delicacy of symbol 

This network shows that modifications are optional; expressions can simply have a single 

Quantity as the symbol, as in      . Alternatively, expressions can take a unary operation, 

a Specifier or both:       ,         ,          . 

As mentioned previously, there are a number of different types of unary operations. In fact, 

within the entire field of mathematics, the number of unary operations is enormous, far too 

many to be accounted for in this thesis. Compared to the vast array of operators used across 

all mathematics, the different types used in the physics texts under analysis is relatively 

modest. Table 3.8 outlines the set of unary operations included in this description. 
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Unary type Unary Example 

change      

factorial !    

absolute value |…| | | 

summation Σ ∑   

sine sin      

cosine cos      

tangent tan      

positive +    

negative      

generic 
most common: 

 ( ) 
 ( ) 

 

Table 3.8 Unary operation types 

The first distinction is between unary operators that come after the Argument (suffixual), 

those that come before (prefixual) and those that occur on both sides (circumfixual). There is 

only one type of each of suffixual and circumfixual unaries and so these can be generated 

first. The suffixual operator is the factorial, shown by !, as in   . Factorials indicate that each 

positive whole number (integers) between 0 and the number in the Argument are multiplied 

together. For example                 . The circumfixual operator is known as 

absolute value and is denoted by |…|, as in | |. Whatever the sign of the Argument, whether 

positive (above zero) or negative (below zero), the absolute value shifts the sign to positive. 

For example, both | | and |  | are equal to 5: | |   ; |  |   . All other unary operators 

are prefixual, coming before the Argument. 

The prefixual operators include three distinct types: the trigonometric operations of sine, 

cosine and tangent (e.g.     ,     ,     ); the change operator shown by   (e.g.   ) and the 

summation operator Σ (e.g. ∑ ). The trigonometric operators can be grouped under a single 

feature through their agnation patterns.
33

 Given a right-angled triangle with three sides 

                                                           
33

 This description will not generate the inverse trigonometric operations (e.g.       ), the reciprocals (e.g. 

    ) nor the hyperbolic operations (e.g.      ), however these could be easily generated as three simultaneous 

systems to the cosine/sine/tangent system. 
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termed opposite, adjacent and hypotenuse, each of the trigonometric operators are equal to a 

relation between two of them: 

 (3:101)       
        

          
 

 (3:102)       
        

          
 

 (3:103)       
        

        
 

More succinctly, the three operators can be related in a single equation through: 

 (3:104)       
    

    
 

The change operator   gives the numerical difference between two instances of the Argument. 

This is usually formalised as         . For example, if      and      the change in 

x would be shown through:               . As   necessitates a symbol that can 

change, it cannot modify numerals (e.g. 5) nor can it modify pronumerals known as constants 

(symbols that don’t change such as π). The elements it can modify are known as variables.  

Finally, the summation operator Σ indicates the sum of all different instances of the 

Argument. For example if there are three instances of  :     ,      and     , the sum 

of all x is shown by: ∑                   . 

Each of the unary operators so far can be equated with a specific set of binary relations. For 

example, a change in x indicated by    is equal to the difference between x at two specific 

points, or         . Indeed most unary operators across the field of mathematics appear 

to encode sets of relations such as this to greater or lesser specificity. This fact in part 

explains their existence. They are used to encode sets of relations in a relatively economical 

way, not dissimilar to the function of technicality in language (Halliday and Martin 1993, 

similar to Lemke’s thematic condensation 1990: 96). In Legitimation Code Theory terms 

(Maton 2014), the distillation of these relations indicates relatively strong semantic density 

(Maton and Doran in press 2016a,b), allowing physics to efficiently describe quite complex 
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relations.
34

 The distillation of univariate relations into multivariate operators will be taken up 

again in Chapter 4 in relation to their role in knowledge building. 

There is one set of unary operators, however, that do not encode a specific set of relations. 

These have been termed [generic] operations and are most commonly indicated by f(…), such 

as  ( ) (read as f of x) in  ( )  
 

 
, though others can be used - e.g.  ( ) (read as g of x). 

These operators do not encode any specific set of relations within the broader grammar of 

mathematics, but rather work as general operators whose meaning shifts instantially with 

each text. More field-specific operators can be found, such as  (   ) in  (   )  

   (     ) used in quantum physics (from Young and Freedman 2014: 1333). However the 

relations these operators encode are constrained by field, not the grammar, and generally 

allow a larger set of relations for different situations in comparison to the entirely 

grammaticalised operators such as  . 

The final pair of unary operators concern signs distinguishing positive (+) and negative ( ). 

These operators most obviously occur in statements that appear at first to have two binary 

operations in sequence, or a binary operation that links only a single symbol. An example of 

this is shown twice in an equation from Text 3.5 above:                . Here there is 

a negative sign before 1.5 not linking it to anything else, and two negative signs between 1.5 

and 3.4. Although having the same form, these negative signs are not the binary operators of 

subtraction. Rather, they are unary operations that distinguish between positive and negative. 

This is justified by the fact that they can come before a single symbol without following 

another, as shown above. The positive sign (+) can do the same as the negative, however it is 

much less common, owing to the fact that positive is default for numbers, and  so does not 

need a sign in the unmarked case. Unary operators such as these can only occur for positive 

and negative; there are no correlates for multiplication   or division  . 

From the discussion above, we can now set out the options for unary operations as in Figure 

3.14. 

                                                           
34

 More specifically, they indicate stronger discursive semantic density (Maton 2014 chapter 9). That is, the 

relations being encoded have nothing to do with the object of study, but rather relations entirely internal to the 

system of mathematics. It is only once the unary operations have been placed within the field of physics (or 

another field) and operate on technicality within that field that the operators add meanings relating to the object 

of study (strengthening the ontic semantic density). 
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Figure 3.14 System of UNARY OPERATION 

 

It was mentioned previously that unaries can operate on Quantities with a Specifier. That is, 

for example, it is acceptable for an expression to include      . It is also possible for unaries 

to operate on other unaries, e.g. to produce something like      . This possibility for unaries 

to be repeated indicates a recursive system. However recursive unaries such as this are rare. 

In particular, it is unusual for recursive operators that repeat the same choice, e.g.    (    ) 

at least in the data under study. Although this study has not made any quantitative 

measurements, it appears reasonable to suggest that the probabilities of choosing a second 

operator over not choosing another operator would be far less than the 1:9 suggested by 

Halliday for the skewed probability in his bimodal hypothesis for grammatical systems of 

English (Halliday and James 1993). Nonetheless, recursive unaries are grammatical. This 

creates an issue, as specifying a recursive system without probabilities or stop rules suggests 

that unary operations are better described as a univariate structure rather than as the 

multivariate structure suggested above. The relatively rare instantiation of recursive unaries, 

however, means that in the vast majority of situations there only two distinct functions 

appearing; functions that have considerably different agnation patterns. For this reason it 

seems preferable to stand by the multivariate analysis for unary operations, while accepting 

the possibility for recursion, albeit rare. 
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3.4.3.1 The system of symbol 

Although the choice of repeated unary operations is rare, it does happen. Thus the network of 

unaries must include a recursive loop. The system network for symbols including unary 

operations and Specifiers is shown in Figure 3.15. 

 

Figure 3.15 Symbol modifications 

 

This network is concerned with the modification of Quantities that realise symbols. It 

indicates that a symbol can include any number of unaries and/or a Specifier, or it can occur 

as an unmodified quantity. In Section 3.4.1 we saw that symbols can also complex with any 

number of other symbols to form large symbol complexes. This complexing involves linking 

symbols through binary operations. Symbols with any unary operation or Specifier can be 

complexed with any other symbol through these binary operations. Crucially for our 

paradigmatic description, the entry condition for choosing between symbol complexing or not, 

and the modifications given by unaries and Specifiers is the symbol. Thus the two sets of 

systems are simultaneous with each other at the same level; they each form systems of 

primary delicacy. The system of EXPRESSION TYPE, determining a symbol complex or not, 

looks outwards to the external relations between symbols; the systems of SPECIFICATION and 

UNARY OPERATION look inwards to the internal structure of symbols. As each of these 

systems are simultaneous at the level of symbol, they can be placed in the same system 
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network. In this network, we can also include the choice of symbols that realise Theme and 

Articulation, as well as Theme ellipsis. Thus, Figure 3.16 presents the entire network for the 

level of symbol. 



145 
 

 

Figure 3.16 Network of symbol 
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This symbol network complements the statement network given in Figure 3.12 above. These 

two networks account for all the variation from the level of symbol up. They describe the 

internal structure of symbols, their complexing into expressions and the complexing of 

expressions into statements. These networks represent two levels in the architecture of 

mathematics. As these make up the bulk of the variation in mathematics, it is pertinent that 

we consider the relation between them. To this we now turn. 

 

3.4.4 Layering in mathematics  

The discussion so far has focused in detail on variation within statements, expressions and 

symbols and has developed structural and systemic models for each. Although there is still 

one more area of the grammar to cover, it is worth taking a step back and viewing the 

grammar as it stands. In particular, we can focus on the interaction between statements, 

expressions and symbols and characterise the hierarchy of levels that they suggest. Two 

levels of networks have been used to describe mathematics so far: statement and symbol. 

Systemically, expressions have arisen within the symbol network as complexes of symbols, 

and within the statement network as parts of the statement. In one sense then, the 

relationship between statements, expressions and symbols is straightforward: statements 

contain expressions and expressions contain symbols. This rather simple characterisation, 

however, clouds the organising principles of these levels and their interaction. 

In English (and to this point every language described in the Systemic Functional tradition, 

see Caffarel et al. 2004a), the scale of units – e.g. morpheme, word, group/phrase and clause 

– are organised hierarchically in a rank scale. Structurally, this rank-scale is organised in 

terms of constituency, i.e. a relation of parts to wholes. A clause contains one or more 

groups, groups contain one or more words and words contain one or more morphemes 

(Halliday 1961, 1965, Huddleston 1965, Halliday and Matthiessen 2014). Paradigmatically, 

there is a tendency for preselection from higher units to lower units. For example options in 

the clause network tend to preselect options in the group/phrase network etc. (Matthiessen 

1995). 

The rank scale proposed by Halliday for English involves multivariate structures associated 

with the experiential component of the ideational metafunction (Halliday 1965, 1979). For 

mathematics, however, this chapter has argued that the overarching structural organisation 
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relating statements, expressions and symbols is not multivariate, but univariate. Although 

there is internal variation within symbols that is best described multivariately, this internal 

variation has no bearing on a symbols’ relation with its higher levels (it does, however, 

impact on lower levels, to be discussed in Section 3.4.6). In the description, statements are 

complexes of expressions, and expressions are complexes of symbols. This hierarchy of 

levels in mathematics is not one of multivariate constituency, but of univariate complexing 

(or interdependency). In this sense, the hierarchical scale in mathematics is more like the 

layering that occurs in larger clause complexes than it is like constituency within a clause.  

On the other hand, like the constituency-based rank scale of English and unlike clause 

complexing, mathematics has obligatory levels with distinct sets of choices. Any 

mathematical statement makes choices at both the level of statement and the level of symbol. 

Mathematics thus has a scale with obligatory levels. Following from the previous paragraph, 

however, these obligatory levels are not a multivariately based rank scale, but one based on 

univariate layering. We thus have an obligatory set of levels based on univariate layering. 

This hierarchy we will call a nesting scale. As shown above, only two networks are needed 

to account for the variation from the level of symbol up. As there are only two networks, 

only two nesting levels are needed: symbol and statement; the level of expression is not 

needed. 

The nesting scale comes about through choices made on two levels. At the level of symbol, 

symbols can complex with other symbols through binary operations such as ×, ÷, – etc. 

These symbol complexes can in turn complex to form statements. The relations of binary 

operations, however, are not available for the complexes that form statements. At this level, 

Relators such as =, > etc. are used. Thus, there are two mutually exclusive sets of relations 

that form different sized units. From this, two distinct levels are justified. The term nesting 

is used purely to distinguish levels based on a univariate structure from those based on a 

multivariate structure. 

The choice of relations at two univariate levels is comparable to those within and between 

verbal groups in English verbal group complexes. Within the verbal group, there is a serial 

tense system, built on a hypotactic univariate structure (Halliday and Matthiessen 2014). For 

example
35

: 

                                                           
35

 Notation follows Martin et al. 2010. Superscript 0 indicates present tense, - indicates past tense, + indicates 

future tense; perf. indicates perfective aspect, imp. indicates imperfective aspect.
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has been running 

v-s have…v-en be…v-ing 


0 


- 


0 

 

As well as this, whole verbal groups can complex. The choice of relations between verbal 

groups, however, is not the same as those within the verbal group. Within the verbal group, 

the univariate relations build serial tense: had been going to run. The relations between 

verbal groups, on the other hand, build phase, began to run, conation, try to run, or 

modulation, tend to run. The choices of different types of verbal group complexing are 

relatively independent of tense choices within the verbal group. This means that serial tense 

choices can occur within verbal group complexes, such as in will have tried to have been 

running. With two sets of choices linking two units, two layered levels occur based on the 

univariate structure: 

 

will have tried to have been running 

  

will v-0 have…v-en v-0 have…v-en be…v-ing 


+ 


0 


- 


perf. 


- 


0 

 

With two sets of choices relating two different units (tense between auxiliary and finite 

verbs in the verbal group, and phase/conation/modulation between verbal groups in the 

verbal group complex) two levels occur. This is distinct from the layering that occurs in 

clause complexing. In English, the choice of both projection and expansion is available at all 

layers. For example both (3:105) and (3:106) are grammatical. (3:106) has projection in the 

outer layer, with expansion in the inner layer: 

 (3:105)  Halliday said that grammatical categories are not theoretical and that 

they are ineffable. 

In contrast, (3:106) has expansion as the outer layer with projection in the lower layers: 

 (3:106)  Halliday said that grammatical categories are not theoretical and he 

said that they are ineffable. 
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Thus the nature of layering in mathematics and English verbal group complexing is distinct 

from English clause complexing. In mathematics and verbal group complexing, there are 

distinct sets of choices at different levels, whereas this is not the case for clause complexing. 

In contrast to mathematics, however, in the English verbal group the choice of the highest 

layer (verbal group complex) is not obligatory. That is, a single verbal group can occur on its 

own within a clause. Thus, there is no obligatory univariate nesting that occurs. Rather, it is 

an optional set of levels. In mathematics, however, this chapter has argued that two 

expressions must be complexed into a statement. This necessitates an obligatory univariate 

nesting scale. The three different forms of layering can be distinguished as in Table 3.9. 

 

 Univariate 

layering 

Distinct 

choices at each 

level 

Choices at highest 

layer obligatory 

English clause complex 

 
Yes No No 

English verbal group/ 

verbal group complex 
Yes Yes No 

Mathematics symbol/ 

statement 
Yes Yes Yes 

 

Table 3.9 Types of layering 

 

As Table 3.9 shows, it is only because mathematics involves univariate layering, distinct 

choices at each level and an obligatory choice at the highest layer, that a nesting scale is 

needed. Such a scale would not be needed if any of the above criteria were not met. 

As mentioned above, only two nestings are needed: statement and symbol. The network of 

symbol accounts for both the internal structure of symbols and their complexing into 

expressions. The network of statement includes the complexing relations between 

expressions and the Theme-Articulation structure. It is possible this higher level network 

could be called expression rather than statement; however since two expressions must 

necessarily complex into a statement and this complex has its own Theme-Articulation 
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variation, the label statement is preferred. Regardless of what they are called, only two 

nesting levels are needed. If we name them statement and symbol, the term expression no 

longer has any formal meaning in terms of the paradigmatic networks. Informally, however, 

it will continue to be used to refer to symbol complexes and to either side of a statement. 

The nesting hierarchy of symbols and statements can thus be represented diagrammatically 

as in Figure 3.17. 

 

 

 

Figure 3.17 Nesting scale of mathematics 

 

The nestings of statement and symbol broadly correspond to the ranks of statement and 

component in O’Halloran’s (2005) grammar. As described above, there is no specific level 

corresponding to O’Halloran’s expression, nor is there any equivalent level to O’Halloran’s 

clause rank (introduced in Chapter 2 Section 2.4.2). Under the description developed in this 

chapter, O’Halloran’s clause (e.g.     ) is a minimal statement with only two 

expressions. 

As described in Chapter 2, O’Halloran also shows the high degree to which optional 

layering can take place. Working with a rank-scale, O’Halloran describes this optional 

layering as rankshift. As the description being built in this chapter uses univariate nesting, 

we will deploy the term layering for O’Halloran’s rankshift. Thus, nestings indicate the 

obligatory levels, while layering indicates the optional levels. Nesting is to layering as rank 

is to embedding. This is summarised in Table 3.10. 
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levels 
univariate-

based 

multivariate-

based 

obligatory nesting rank 

optional layering embedding 

  

Table 3.10 Types of levels 

It must be noted that optional layering is not available at all levels. Indeed it is only within 

the nesting of symbol that layering can occur. Statements have no possibility of optional 

layering. That is, statements cannot occur within statements. Any insertion of a Relator such 

as = necessarily happens at the same level as every other Relator in the statement. Symbol 

complexes, on the other hand, can have quite deep and complicated optional layering, as 

shown in (3:107-108). Square brackets have been added to (3:108) to show the different 

optional layers within the expression: 

 

 (3:107)      
 

 
    

   

 
 

 (3:108)         
 

 
         

     

 
   

 

On the left side of the equation, there is only a single optional layer. On the right hand side 

there are three optional layers. These optional layers occur at the obligatory nesting of 

symbol. Both the optional layering and the obligatory nesting are shown with their different 

relations in the Table 3.11.
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Obligatory Nesting  

statement 

Statement Relator Expressions Involved 

    
 

 
    

   

 
 

= 

equals 

     

 
 

 
    

   

 
 

  

symbol 

 Expression Expression 

    
 

 
    

   

 
 

Optional Layering Symbol Complex Operation Symbols Involved Symbol Complex Operation Symbols Involved 

Layer 1       
+ 

addition 

 K 

 U 
  
 

 
         

     

 
  

-  

subtraction 

 [
 

 
]      

 
     

 
 

Layer 2 

 

  
 

 
        

× (elided) 

multiplication 

 [
 

 
] 

 m 

 [v
2
] 

 
     

 
  

― 

division 

 [GMm] 

 r 

Layer 3 

 
 

 
  

― 

division 

 1 

 2 

     
power  

(superscript) 

 v 

 2 

      

× (elided)  

multiplication 

 G 

 M 

 m 

Table 3.11 Obligatory nesting and optional layering in an equation
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When looked at from the point of view of language, the univariate nesting scale that occurs 

in mathematics is ‘exotic’. This is because, in Systemic Functional descriptions of language, 

the obligatory hierarchies are organised around multivariate rank-scales. It remains to be 

seen whether nesting scales are a broader feature of certain types of semiotic system. It may 

be the case, for example, that the broader family of symbolism including chemical 

symbolism, linguistic symbolism and formal logic symbolism are organised around nesting 

scales such as this (discussed in Chapter 6). We will see in Chapter 5 that when viewed 

through field, the univariate organisation of mathematics has a significant impact on the 

structuring of knowledge in physics. If it turns out that other symbolic systems are indeed 

organised univariately like mathematics, this field-based perspective could provide an 

explanation for their uptake and evolution alongside language. 

The nesting scale is not the only hierarchy needed to account for mathematical symbolism. 

The following section will describe a network for types of element, which work at a level 

below symbol. This network derives from the pre-selection of the type of Quantity needed 

by various unary types. From this, it will become clear that a small rank scale based on a 

multivariate structure is needed to account for the variation in types of symbol. This will 

mean the architecture of mathematics involves two interacting hierarchies based on different 

structures, with the level of symbol facing both ways. 

 

3.4.5 System of ELEMENT TYPE 

Section 3.4.3 showed that not any element can take any unary operation. For example 

Specifiers cannot occur on numerals, *21 but can occur on elements taken from the Roman or 

Greek alphabet, known as pronumerals: E1. To account for this, we will distinguish between 

different types of element. Elements realise Quantities, and thus occur at a lower level than 

symbol. Elements themselves do not have any internal structure, but rather are justified 

through preselection from higher levels. In this way, they are similar to morphemes in 

relation to words in English; they form the lowest level of the description and make up the 

constituents of symbols. We can use      to distinguish between the levels of symbol and 

element, through the analysis shown in (3:109). 
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 (3:109) 

 sin x 

symbol class unary 

symbol structure 
Operation Argument 

 Quantity 

element class  pronumeral 

 

Under this analysis, the entire symbol      is of the class [unary] at the level of symbol, 

realised by the Operation^Argument. The Argument is conflated with the Quantity, which is 

realised by the element class [pronumeral]. The ‘sin’ does not need an analysis at a lower 

level as it has been lexicalised at the level of symbol. There is no possible variation within sin 

that necessitates its own system. This section will be concerned with developing the system 

of different types of elements, before moving to a consideration of the relationship between 

the level of symbol and element in the following section. 

The first distinction is between elements known as [units] and all others, termed [values]. The 

distinction can be seen in the equation                             from Text 3.6 above. 

The final N (glossed as Newtons) is unlike the other numbers and pronumerals. It is a unit of 

measurement; in this case, the unit of Force (F in the equation). Each physical quantity will 

have its own unit or set of units, for example in the standard units of physics (know as SI 

units) mass is measured in kilograms (kg), length in metres (m), time in seconds (S). These 

units can complex through binary operations of multiplication, division, etc. just as other 

symbols can. For example acceleration is measured in m/s
2
 (metres per second squared), and 

the universal gravitation constant (G) is measured in Nm
2
/kg

2
 (Newton metres squared per 

kilogram squared). They cannot, however, occur within a unary operation, e.g. neither *     

nor *   occur. Units are usually not written in italics (whereas pronumerals are), and 

predominantly occur after the final numerical solution of a quantification.
36

 An example of 

this is shown in an excerpt from Text 3.6, with the unit N shown in bold: 

                                                           
36

 Often units will be accompanied with a direction, such as downwards in                      , from 

Text 3.1. This depends on whether the variable being measured is a vector or a scalar (discussed below). 

Directions are not taken as part of the grammar of mathematics described here as they cannot complex with 

binary operations, nor can they vary their position like all other symbols, and they are almost always realised by 

language, not a specific mathematical symbol. They appear best described as a linguistic element emergent from 

the intermodality between mathematics and language. 
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All other elements are classed as [values]. The basic distinction within [values] is between 

[numerals]: 1, 2, 7.3, 1049274 etc. and [pronumerals]: x, y, π, κ etc. Grammatically, they can 

be distinguished through preselection from specification at the level of symbol. Pronumerals 

can take a Specifier: E1 whereas numerals cannot: *21. This distinction is important for the 

discussion of genre in the following chapter; two genres known as quantifications and 

derivations are differentiated by whether the final Articulation within the final statement 

involves numerals (quantification) or pronumerals (derivation). 

Within [pronumerals], we can distinguish [variables] from [constants]. [variables] are 

pronumerals that could potentially have a number of different numerical values, whereas 

constants are those that cannot. An example of a [constant] is π which has an unwavering 

value of 3.1415.. In contrast, F and W in the equations above are considered variables. This 

distinction is presaged by the fact that the unary operator change, Δ, necessarily requires a 

variable: ΔF is acceptable, whereas *Δπ is odd at best. Finally, within variables are [scalars] 

and [vectors].
37

 Notionally, [vectors] are number with a direction, whereas scalars do not 

include a direction.  For example, if a force was to occur, it necessarily occurs in a particular 

direction (up, down, left, right or somewhere in between), thus it is a vector. Mass, on the 

other hand, is a directionless scalar; it does not occur in any direction, but is simply a 

physical quantity. The direction for vectors are often specified after the units in a 

quantification, such as downwards in                       (though see footnote 16). 

Vectors are often indicated through being bold: e.g. F or through an arrow placed above it, 

e.g.  ⃗. 

Various distinctions could be made within [numerals], however this will be the furthest step 

in delicacy taken in this description. The system for element is thus shown in Figure 3.18. 

 

                                                           
37

 Particular types of vector known as Unit vectors, such as those used in certain coordinate systems (e.g. 

 ̂  ̂      ̂ for spherical coordinates) are not included in this grammar as they are more commonly used in 

vector calculus, which is beyond first year university physics. If they were to be included, however, the system 

distinguishing vectors and scalars would be simultaneous with the system distinguishing constants and variables. 
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Figure 3.18 System of ELEMENT TYPE 

 

 

3.4.6 Levels in the grammar of mathematics 

Section 3.4.4 suggested the relationship between symbols and statements involves two levels 

on a nesting scale. This was based on the fact that symbols complex into statements through a 

univariate structure. Two networks were developed for these levels. The statement network 

showed complexing involving Relators such as = and >. The symbol level indicated 

complexing that utilised binary operators such as +, -, × etc. With each potential complexing 

relation only available at specific levels (Relators between expressions and binary operators 

between symbols), two nesting levels were justified. The previous sections have shown that 

as well as the univariate complexing, there is also internal structure within symbols that is 

best described multivariately. This multivariate structure preselects distinct types of element 

to be placed within each symbol. Accordingly another network of element types was 

proposed, accounting for the possible choices of element. This element network does not 

have the same relation to statements as symbols do. There is no univariate complexing of 

elements that make up symbols - we cannot say sin(y2) where y2 does not indicate some 

binary relation such as multiplication or power. Elements do not complex into symbols in the 

way symbols complex into statements. Rather, a more fruitful avenue is to view elements as 

constituents of symbols. This is similar to viewing morphemes as constituents of words and 

word groups as constituents of clauses in English. This comes about through the internal 

multivariate structure of symbols. Different components of symbols perform different 

functions, with some of these components preselecting certain types of element at the level 

below. Thus, due to the multivariate nature of symbols and their constituency relation with 
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elements, the development of an element network sets up a rank scale of the type more 

commonly associated with language. This rank scale has the symbol as the highest level and 

the element as the lowest, as pictured in Figure 3.19. 

 

 

Figure 3.19 Rank scale of mathematics 

 

In this diagram,      sits at the rank of symbol, with x arising from the rank of element. As 

discussed in Section 3.4.3 above the sin is lexicalised at the rank of symbol and so does not 

need to be accounted for at the rank of element. Combining this rank scale with the nesting 

scale, we see that the symbol plays two roles. It is the lowest level of the nesting scale below 

statements as well as being the highest level of the rank scale above elements. It is both a 

rank and a nesting. With the symbol facing both above and below, the hierarchy of levels in 

mathematics can be viewed as an interaction between a nesting and rank scale, represented in 

Figure 3.20. 

 

Figure 3.20 Levels in mathematics 

We can now combine the rank scale with the obligatory nesting scale and its optional 

layering to represent a single statement. Table 3.12 shows each level within the equation 

           . 
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Obligatory Nesting Rank  

statement  

Statement Relator 
Expressions 

Involved 

            
= 

equals 

    

          

 

symbol 

 Expression Expression 

            

Optional Layering Symbol Complex Operation Symbols Involved Symbol Complex Operation Symbols Involved 

Layer 1 

 

[            ] 
-  

subtraction 

         

      

Layer 2 

        
× (elided) 

multiplication 

 v 

      

     
× (elided) 

multiplication 

 a 

 t 

 

 

element 

Symbol Symbol Symbol Symbol Symbol 

              

Operation 
Element 

Involved 
Operation 

Element 

Involved 
Operation 

Element 

Involved 
Operation 

Element 

Involved 
Operation 

Element 

Involved 

specification      sine         

 

Table 3.12 Obligatory nesting, optional layering and rank in an equation
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Although only containing three levels, the janus-faced nature of mathematical symbols means 

the hierarchy of mathematics is somewhat more complicated than for any language described 

systemically to date. There is an interaction between obligatory nestings and ranks, with the 

potential for further optional layering involving symbol complexes. As discussed previously, 

an architecture such as this might be viewed as exotic from the perspective of language. To 

this point, descriptions of languages have not necessitated an obligatory nesting scale, let 

alone one which coexists with a rank scale. It remains to be seen whether interacting scales 

such as these are a feature of many families of semiotic resources, or whether they are a 

feature of only mathematics. What is clear, however, is that the two scales are possible and 

can occur simultaneously. 

This discussion of the levels within the grammar of mathematics concludes the description 

proper. Each relevant network and their structural organisation has been introduced, with the 

possible variation at each level comprehensively described. It is now time to take a step back 

and view the grammar as a whole. It is here that we can approach the questions of how to 

interpret mathematics in terms of theoretical concepts such as metafunction. It is from this 

perspective that we will see the most striking feature of mathematics in relation to the 

Systemic Functional model of language. 

 

3.4.7 Metafunction in the grammar of mathematics 

The description put forward in this chapter has attempted to treat the grammar of 

mathematics on its own terms. To do this, it has taken the axial relations of system and 

structure as the primary basis upon which semiotic description holds. This has meant that 

broader phenomena such as metafunction, strata and rank have not been assumed at the outset. 

The challenge set forth was to independently justify these phenomena. Accordingly, this 

approach has the potential to produce different architectures for mathematics than for English. 

However if we wish to understand the specific functionality of any distinct semiotic system, 

such an approach is necessary. The discussion above on the levels in mathematics 

exemplifies this. In building a level scale built on distinct patterns of systems and structures 

rather than assuming a rank scale, a unique set of levels have been shown. A two level rank 

scale complements a two level nesting scale, with the level of symbol situated in both. This is 

in contrast to O’Halloran’s (2005) hierarchy that posits a four level rank scale. The difference 

has come about through distinct methodologies and motivations. O’Halloran proposes a 
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language-based view of mathematics which involves a rank scale; this description takes an 

axial view of mathematics and builds a distinct set of levels. 

As it is for rank, so it is for metafunction. Following the same principles that determined the 

distinct level hierarchy of mathematics, this section will be concerned with building a model 

of metafunction in mathematics. As stressed throughout, metafunctions are not assumed, but 

must be justified. Evidence for metafunctionality is drawn from two sources: i) relative 

paradigmatic independence or interdependence and ii) structural similarity or dissimilarity 

(see Chapter 2 Section 2.4.4). If an area of the grammar has both the potential for relatively 

independent variation with other areas and a distinct type of structural realisation, evidence of 

a metafunctional component exists. 

From this basis, we will see that the architecture of mathematics is dominated by the 

ideational metafunction. In particular, the logical component permeates the grammar and 

builds the nesting scale on which most sets of choices exist. The other component within the 

ideational metafunction we will call the operational component. In comparison to the logical 

component, this component is relatively small and is in some ways subservient to the logical. 

It is nonetheless responsible for the development of the rank scale. Textual variation comes 

about at both levels of the nesting scale, organising the information flow. Most strikingly, 

however, there appears to be no evidence for an independently motivated interpersonal 

component. Each of these observations will be considered in turn, before turning to a 

discussion of the overall functionality of mathematics that this analysis suggests. 

 

3.4.7.1 The logical component 

The predominant structural organisation of the grammar is univariate. Statements are built 

from a univariate complex of expressions that are indefinitely iterative. And symbols can 

indefinitely complex with other symbols. On the other hand, the Theme-Articulation 

distinction is based on a multivariate structure. However, the tension between this structure 

and the univariate organisation results in indefinitely iterative Articulations. The univariate 

structure is dominant at this level. This is reflected in the paradigmatic organisation of the 

statement  where all choices are potentially recursive (see Figure 3.12). Each new expression 

necessitates a new choice in the type of Relator and vice versa. At the level of symbol below, 

recursion is also dominant. Symbols can and do complex into intricate expressions. 
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Furthermore, even unary operations, which display a more multivariate structure, are 

potentially recursive. Indeed it is through the obligatory complexing of expressions into 

statements (that is, the complexing of symbol complexes) that the nesting scale arises. The 

recursive and univariate organisation of the mathematics is pervasive. 

The structural similarity of each of these systems, being univariate, suggests each could be 

part of a similar functional component. This is augmented by the fact that in mathematics the 

protypically recursive systems are in general independent of those that produce the 

multivariate structures. The choice of the number of expressions in a statement is independent 

of the choice of their organisation in terms of Theme and Articulation; the sequence of 

expressions does not determine the choice of Relator.
38

 At the level of symbol, the system of 

EXPRESSION TYPE that determines the complexing relationships between symbols is 

simultaneous and thus independent of the choices within symbols that are multivariate. That 

is, any unary operation such as sin, cos, Δ etc. can occur with any binary operation, such as ×, 

÷, + etc. The system of EXPRESSION TYPE is also closely intertwined with the system of 

COVARIATION. The covariate relations, in conjunction with the system of STATEMENT TYPE, 

determine the possible types of expression. This leads to the potentially indefinitely iterative 

nature of the COVARIATION system, whereby any number of covariate relations may occur. 

Due to this close interaction of COVARIATION and EXPRESSION TYPE and the fact that the 

COVARIATION system is indefinitely recursive, leading to a structure more closely related to 

univariate structures than multivariate structures, COVARIATION can also be considered part of 

this component (see Section 2.1.2 in Chapter 2 where univariate and covariate structures are 

grouped together as interdependent structures that are opposed to multivariate structures). 

All areas of the grammar that are organised through an interdependency structure (univariate 

plus covariate) are almost entirely independent of those organised multivariately. That is, 

there is a large group of systems that has structural similarity and paradigmatic independence 

from other systems. Thus these systems fulfil the criteria for being grouped into a distinct 

functional component. 

Given the fact that this component has recursive systems as one of its hallmarks and is 

primarily organised through a univariate structure, this component appears most similar to the 

logical component within English (Halliday 1979). We can thus responsibly classify these 

                                                           
38

 An exception being the swapping of [greater-than] (e.g. >) with [smaller-than] (e.g. <) in certain cases. See 

section 3.4.3. 
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systems as being part of the logical metafunction. The systems that constitute the logical 

component are shown in Table 3.13. 

 

          Metafunction 

Level 
Logical 

statement 

STATEMENT TYPE 

REARTICULATION 

COVARIATION 

COVARIATE MULTIPLICITY 

symbol EXPRESSION TYPE 

 

Table 3.13 Logical metafunction in the grammar of mathematics 

 

The logical metafunction dominates the grammar, colouring most other systems. As 

discussed above, this is seen through the potentially recursive unary operations (classed as 

operational below) and the iterative Articulations (classed as textual below) brought about by 

tension with the potentially iterative expressions. The logical metafunction is also responsible 

for the nesting scale in mathematics. As we will see, however, the rank scale comes about 

through the other component of the ideational metafunction, the operational component. 

 

3.4.7.2 The operational component 

Simultaneous to the logical system of EXPRESSION TYPE at the level of symbol are the systems 

of UNARY OPERATION and SPECIFICATION.  Both of these systems are realised through a 

multivariate structure. The system of SPECIFICATION distinguishes between the functions of 

Quantity and Specifier, while the system of UNARY OPERATION gives both Operation and 

Argument. As these systems are paradigmatically independent of the systems in the logical 

component and are realised through a distinct structure, a case holds for these systems to 

form their own functional component. This component is entirely responsible for the rank 

scale in mathematics. It is through preselections within both SPECIFICATION and UNARY 

OPERATION that the development of a system at this lower level is justified. Moreover, the 
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multivariate structure resulting from these systems provides the constituency relation between 

symbols and elements that distinguish this scale from the nesting scale derived from the 

logical component. As the distinctions within the rank of element are preselected from 

systems within a single component, and there are no simultaneous systems within this rank, 

the entire set of choices within the rank of elements can be classed as part of the same 

component. 

The multivariate structures in this component are similar to those within the experiential 

metafunction in English. Notionally the experiential metafunction is concerned with 

construing our experience of the outside world (Halliday 1979). In English, for example, the 

experiential system of TRANSITIVITY divides the clause into the material, mental and 

relational clauses (Matthiessen 1995), broadly construing the realms of doing, thinking and 

being. Although in an axial description the notional “meanings” of categories are not 

privileged, they are helpful when labelling. At the level of symbol, it is difficult to reconcile 

the choices of UNARY OPERATION or SPECIFICATION as in some way construing our outside 

world. In this sense, the label ‘experiential’ is somewhat awkward. This component is more 

concerned with operations on elements in symbols than with construing the experiential 

world. Thus, to more easily capture this nature, this component will be called the operational 

component. The systems included in the operational component are shown in Table 3.14. 

 

          Metafunction 

Level 
Operational 

symbol 
UNARY OPERATION 

SPECIFICATION 

element ELEMENT TYPE 

 

Table 3.14 Operational metafunction in the grammar of mathematics 

 

At this point it is pertinent to note the ineffability of semiotic categories (Halliday 1984). The 

component labelled above as operational is justified as a distinct component through its 

paradigmatic and syntagmatic organisation, not through its notional meaning. By labelling 

this component ‘operational’ we emphasise the differences between this component and the 
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experiential component in English. These differences include the considerably distinct sets of 

choices that each component includes: the operational component of mathematics does not 

include choices for TRANSITIVITY, CIRCUMSTANTIATION, CLASSIFICATION, EPITHESIS, 

QUALIFICATION, EVENT TYPE or ASPECT as it does in the grammar of English (Halliday and 

Matthiessen 2014: 87). Conversely, the experiential component of English does not include 

choices of UNARY TYPE or SPECIFICATION as occurs in the operational component of 

mathematics. Indeed, aside from their multivariate structure, there is little in common 

between the two components. Thus, distinct labelling is appropriate. It remains to be seen 

whether the systems captured under the experiential component in English and those in the 

operational component in mathematics are in some sense part of the same component in the 

broader scheme of semiosis (or indeed whether metafunction is a useful category in the 

broader description of semiosis). To determine this, detailed axially motivated descriptions of 

inter- and multi-semiosis would need to be developed. What this will uncover, or indeed what 

this would look like, is at this stage unclear.  

This aside, the operational component will be grouped with logical component as parts of the 

ideational metafunction. This allows the mathematical system to be characterised as one built 

primarily by the ideational metafunction. They are both organised syntagmatically through a 

particulate structure and notionally allow mathematics to represent the world. 

In section 3.4.3 it was shown that each unary operation can be equated with a set of logical 

relations. For example, the change operator Δ, when operating on a variable, is defined as 

        . The unary operation Δ thus distils the logical relation      .
39

 Indeed all 

unary operator distil a set of logical relations that can be applied to a range of symbols. 

This suggests that the multivariate component of mathematics has developed as a 

grammaticalisation of large sets of logical relations. As mathematics progresses through 

higher levels of schooling, more unary operations are introduced, distilling ever increasing 

sets of logical relations. Thus ontogenetically speaking, it appears that the operational 

component develops out of the logical. Indeed, as students move into calculus, increasingly 

multivariate structures are built upon growing sets of logical relations. The distillation of 

logical relations into the multivariate structure, is similar to the development of technicality 

in English. The operational component both condenses and changes the nature of the logical 

                                                           
39

 More strictly, the unary operation Δ distils a dummy relation of subtraction between two instances of the same 

symbol (shown through different specification subscripts). This relation can be applied to any symbol, so 

        ,         ,          etc. 
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relations (Halliday and Martin 1993: 33). Although the operational component of the 

grammar grows through the years, it is based on, and in some sense in service of, the logical 

metafunction. This provides another justification for both components to be aspects of the 

same, ideational metafunction, fulfilling complementary roles. The final set of variation 

considered relates mathematics to the textual metafunction. 

 

3.4.7.3 The textual component 

In addition to the variation involved in the logical and operational components, there is a 

small set of choices that organise the information flow of the text. These systems include the 

choice of Theme, its possible ellipsis and the ordering of Articulations. Each of these choices 

are independent of choices in the logical and operational components.
40

 The Theme can be 

any expression involving any complex of symbols or unary operations. Similarly any set of 

symbols can be elided if they are Theme.  

The Theme-Articulation structure was described multivariately, but with the potential for 

indefinitely iterative Articulations under pressure from the logical component. This structural 

configuration is similar to that of the operational component. This similarity raises an issue 

for the characterisation of these systems as a distinct metafunctional component. They are 

indeed paradigmatically independent, suggesting a different component, but they have a 

structural realisation part-way between the prototypically univariate structure of the logical 

component and the multivariate of the operational. 

It was said above that the nesting scale develops through the logical component, while the 

rank scale derives from the operational component. The paradigmatic choice of which 

symbols are thematised and which are placed in the Articulation occurs at the level of symbol. 

These choices, however, realise the Theme and Articulation structures deriving from the level 

of statement. As well as this, all variation at the rank of element, and all choices at the rank of 

symbol that preselect types of elements are accounted for by the operational component. Thus 

the bundle systems organising the Theme-Articulation choices and those of ellipsis sit firmly 

within the nesting scale.
41

 

                                                           
40

 Excepting those indicated in note 18 above. 
41

 There is another set of choices not described here that could also form part of this component at the level of 

symbol. This involves the distinction between 
   

 
 and  

  

 
. Ideationally these symbol complexes are the same. 
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As mentioned above, these systems are independent of all choices in the logical and 

operational components. As well as this, they sit in the nesting scale but have a distinct 

multivariate configuration to the logical univariate configuration that produces the nesting 

scale. For these reasons, it seems appropriate to consider these systems to be part of a 

separate component altogether. 

This component is concerned with the information flow of mathematics. Thus it can be 

termed the textual metafunction for mathematics. The systems comprising this metafunction 

are given in Table 3.15. 

 

          Metafunction 

Level 
Textual 

symbol 
THEME 

THEME ELLIPSIS 

 

Table 3.15 Textual metafunction in the grammar of mathematics 

 

3.4.7.4 The Interpersonal Component 

From an axial perspective, there is no evidence to propose an interpersonal component in 

mathematics. The three components outlined so far, the logical, operational and textual, 

account for all of the systems within this grammar. There are no apparent systems realised 

through a prosodic structure, nor are there any other systems paradigmatically independent of 

those already accounted for. Looking notionally, there are no systems that appear to give 

similar meanings to those of NEGOTIATION or SPEECH FUNCTION, nor those that give the 

evaluative meanings of APPRAISAL or the power and solidarity dimensions of VOCATION. Nor 

are there any systems that give choices comparable to those of MOOD. Without paradigmatic 

independence or distinct syntagmatic structures, there is no reason to suggest a distinct 

interpersonal component in mathematics. 

                                                                                                                                                                                     
However, they are organised marginally differently in a way that appears to give some sort of textual meaning. 

Further description is needed to incorporate this variation into the grammar.  
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In light of this description, however, it is pertinent to consider a number of important insights 

made by O’Halloran (2005) regarding the possibility of an interpersonal component. First, 

O’Halloran points out that there are some similarities in the meanings between certain 

Relators in mathematics and interpersonal constructions in English. In particular, she 

suggests a system of POLARITY to distinguish between the positive polarity of = and the 

negative polarity of ≠ (often glossed as not equal to) (2005:100, 115). POLARITY in English 

is considered an interpersonal system (Martin 1984, though not without some contention, see 

Halliday 1978a:132 where it is treated as experiential and Fawcett 2008 where it is its own 

functional component), thus O’Halloran considers the distinction between = and ≠ to also be 

interpersonal in mathematics. Along similar lines, we could consider Relators ≈ and ~, both 

glossed as approximately equal to, to notionally give some sort of meaning of GRADUATION, 

another interpersonal system (Martin and White 2005). These could also therefore form part 

of an interpersonal component. Developing an interpersonal component based on similarities 

in meanings such as these, however, goes against the principled axial description built in this 

chapter. Arguments along these lines rely on notional reasoning that analogises from English. 

In contrast, if looking at the above axially, we see that each of these Relators, ≠, =, ≈ and ~  

are entirely dependent on choices within the STATEMENT TYPE network, which was classified 

as part of the logical component. Thus, the choices giving rise to these Relators are firmly 

within the logical component. They do not form a distinct paradigmatic system simultaneous 

with those of other components, nor are they realised by a distinct type of structure. 

Therefore they do not constitute a distinct functional component. They do, however, suggest 

that the meanings of polarity and graduation have in some sense been ‘ideationalised’ when 

translated into mathematics. These meanings that would be made through the interpersonal 

metafunction in English are made through the ideational metafunction in mathematics. 

An interpretation along these lines allows an understanding of the quantification of certainty 

through probability, statistics and measurement errors, in relation to linguistic modality. As 

O’Halloran (2005: 115) states, “In mathematics, choices for MODALITY in the form of 

probability may be realised through symbolic statements or measures of probability; for 

example, levels of significance:       (where the notion of uncertainty is quantified) and 

different forms of approximations.” Viewed from the description developed in this chapter, 

the meanings of modality have been ideationalised in a similar way to the polarity and 

graduation meanings discussed above. What would be expressed interpersonally in language 

through graded modalisation of probability (e.g. The hypothesis is probably true), is 
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expressed through an ideationally organised mathematical statement (such as through p-

values: e.g.        used to determine the likelihood of a hypothesis being true or false). 

What is interpersonal in language can be seen as quantified and ideationalised in mathematics. 

Although statistical mathematics is not studied in detail in this description, it is possible that 

this system has developed largely to ideationalise what would otherwise in language be fuzzy 

interpersonal measures of modalisation. 

A second important observation by O’Halloran regards interactions between mathematics and 

language in instances such as Let    . The use of Let before the mathematical statement 

indicates the construction is a discourse semantic command (demanding goods and services). 

Without the Let, however, the mathematical statement is arguably more similar to a discourse 

semantic statement (giving information). Thus, the Let affects the speech function, giving it 

variability in interpersonal meaning.  

In regards to whether this constitutes evidence for an interpersonal component in 

mathematics, the grammar developed in this description only considers mathematics in 

isolation; it does not look at the interaction of mathematics and language. From this 

perspective, the introduction of language into the statement is immaterial to a discussion of 

the functionality internal to the system of mathematics. It does, however, raise an important 

challenge that has yet to be fully solved. The introduction of language appears to 

contextualise the mathematics, transposing the speech-functional meanings from language 

across to the mathematics. This raises the question of how then we are to model 

metafunctionality across inter-semiotic systems, or indeed across semiosis in general. 

Arguing that mathematics does not have an interpersonal component internal to the system 

does not preclude the possibility that mathematics occurs in texts with resources that do 

engender interpersonal meaning. More broadly speaking, with multimodal texts, the various 

functionalities of each semiotic resource are likely to contextualise one another. In the case of 

Let    , as mathematics does not have the ability to distinguish between speech-functions, 

it appears that language is being ‘imported’ as necessary to make these meanings. Studying 

the internal functionality of different semiotic resources could provide insights into why some 

are used in conjunction with others. 

One final point regarding the lack of an interpersonal component in mathematics concerns its 

relation with the register-variable of tenor. In Systemic Functional studies, it is generally 

accepted that there is a metafunctional “hook-up” with different register variables: shifts in 
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field tend to impact ideational meanings, shifts in tenor tend to impact interpersonal meanings 

and shifts in mode tend to impact textual meanings. Without an interpersonal component, this 

register-metafunction correlation could potentially be put at risk. This, however, brings us 

back to the point made above that mathematics is rarely used in isolation. Other semiotic 

resources such as language, images and gesture, are regularly used alongside mathematics in 

various contexts. Multimodal texts that include mathematics are likely to shift interpersonal 

meanings across multiple resources. Thus tenor would be realised multimodally.  

In short, the lack of an internally motivated interpersonal component in mathematics does not 

preclude mathematics from being involved in interpersonal meaning in a multimodal text. 

What it does suggest is that mathematics cannot produce variations in interpersonal meaning 

of its own accord; it must do so in interaction with other semiotic resources. Interpersonal 

meanings from one resource are likely to be ideationalised when translated into mathematics. 

It is possible this ideationalising feature of mathematics is a large reason for its powerful role 

in academic disciplines. The role of mathematics in building academic knowledge will be 

discussed in relation to genre and field in Chapters 4 and 5. 

3.4.7.5 The function-level matrix for the grammar of mathematics 

With the discussion of metafunctionality in mathematics, the description has been completed. 

We can now bring together the metafunctions, level hierarchy and systems of mathematics 

into a single function-level matrix shown in Table 3.16. 

Nesting Rank Logical Textual Operational 

statement  

STATEMENT TYPE 

REARTICULATION 

COVARIATION 

COVARIATE MULTIPLICITY 

 

 

symbol EXPRESSION TYPE 
THEME 

THEME ELLIPSIS 

UNARY OPERATION 

SPECIFICATION 

 element   ELEMENT TYPE 

 

Table 3.16 Function-level matrix for the grammar of mathematics 
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This table shows the most salient features of the architecture of the grammar of mathematics: 

- Three functional components: textual, logical and operational (but no 

interpersonal); 

- Two level hierarchies: a nesting hierarchy involving statements and symbols, and 

a rank-scale involving symbols and elements. The level of symbol operates on 

both hierarchies; 

- Logical and textual systems are confined to levels on the nesting scale; 

- Operational systems are confined to levels on the rank scale. 

 

3.5 An axial description of mathematics 

This chapter set itself the goal of developing a model of mathematics based on axial 

principles. It has taken the paradigmatic and syntagmatic axes as primitive and sought to 

justify larger features of the descriptive architecture from these. To this end, it did not assume 

macrotheoretical categories such as metafunction or rank, but rather looked to derive these 

from the systems and structures apparent in the grammar. In doing this, it has produced a 

description that is in a number of ways “exotic” when compared to language. Rather than a 

single rank-hierarchy based on constituency, it has shown there are two hierarchies in play, 

catering to different types of variation. The nesting hierarchy is derived from the logical 

component and affords the possibility of textual variation. The rank-scale, on the other hand, 

organises the systems of the operational component. These three components, the logical, 

operational and textual, were shown to be the only metafunctional variables needed to 

account for the entirety of the grammar. No interpersonal systems were found. Indeed it was 

suggested that part of the reason for using language in interaction with mathematics is to 

make use of language’s interpersonal meanings. Mathematics, for its part, was argued to 

‘digitally’ ideationalise meanings that may otherwise have been expressed interpersonally in 

graded systems in language. The specific meanings made by mathematics, and their role in 

the knowledge building in physics will be explored in relation to the register variable field in 

Chapter 5. 

The approach taken in this chapter has attempted to utilise a descriptive methodology that can 

show the functionality of mathematics on its own terms. Axis was chosen as the primitive in 

relation to i) its potential to be used as the basis for deriving other characteristics of the 
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grammar and ii) its generalisability across semiotics systems. If we wish descriptive and 

theoretical categories such as metafunction and rank to continue to have utility in the future 

of Systemic Functional Semiotics, they must be justifiable. The description offered here has 

shown that metafunction and rank are indeed productive notions, allowing large segments of 

mathematics and other semiotic resources to be characterised and generalised.  But without a 

principled axial foundation for determining and distinguishing ranks, metafunctions and other 

categories, descriptive semiotics runs the risk of emptying these terms of meaning, and 

making everything look like English.  

This chapter has looked at mathematics in isolation and on a small, grammatical scale. The 

following chapter comes at mathematics from a different angle, genre. As part of this, 

language will be brought into the picture, providing an avenue for understanding 

intersemiotic relations. With views from both grammar and genre, Chapter 5 will consider 

mathematics’ role in knowledge building in relation to images and language from the 

perspective of the register variable field. 
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CHAPTER 4 

Genres of Mathematics and Language 

 

Mathematics is just one of many ways of meaning in the discourse of physics. In physics 

classrooms and textbooks it is regularly used in conjunction with images, gestures, film and 

demonstration apparatuses. Its most common counterpart, however, is language. The 

interplay between mathematics and language is inescapable and must be seriously considered 

if we are to understand texts in use. When mathematics is present, there is a constant 

exchange of meaning back and forth with language that works toward a variety of purposes. 

This exchange works not only to move from the meanings made by one resource to the 

meanings made by the other, but to build new meaning; in Lemke’s (1998) terms, it works to 

multiply the meanings made by each resource. 

The previous chapter considered mathematics as a system in its own right. In doing so, it 

provided a platform for understanding the nature of mathematics, and for discussing its 

possible variation in texts. However that discussion explicitly avoided consideration of how 

mathematics interacts with other semiotic resources. This chapter takes the next step by 

considering physics bimodally, as an academic discipline construed through both 

mathematics and language. In doing so, it will focus in more detail on the regular co-

patternings of mathematics and language in physics texts. This is in pursuit of understanding 

how the knowledge of physics is construed and the question of why mathematics is used in 

physics. 

The interaction of semiotic resources such as mathematics and language can be considered 

from many different angles. The most common approach is to propose systems that describe 

the intersemiotic relations between various semiotic resources (especially image-text 

relations, see Bateman 2014a). O’Halloran (2005: chapter 6), for example, presents an 

account of intersemiotic relations among mathematics, language and image at the levels of 

discourse semantics, grammar and display (a general term used for the expression planes of 

image, mathematics and written language). These systems consider both the micro- 

(grammatical) and macro- (discourse) transitions at play in mathematical discourse in order to 

understand, among other things, how multisemiotic texts mix and adopt features of different 

resources while maintaining coherence. Approaches such as O’Halloran’s consider the 
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movements between semiotic resources within texts, rather than characterising texts as a 

whole. In contrast, Bateman (2008) in his study of highly multimodal documents focuses on 

the overall organisation of texts as genres. In his analysis, the semiotic resources in play are 

considered together from a number of levels, including rhetorical structure, content structure 

and layout. These in turn are brought together to characterise the text as a whole. Bateman 

stops short, however, of proposing distinct types of multimodal text with distinct structures 

(i.e. an inventory of multimodal genres), citing the need for more empirical investigation. 

Following Bateman’s lead, this chapter will consider bimodal mathematical and linguistic 

texts from the perspective of genre. It will, however, take one step further by developing an 

explicit description of genres that involve language and mathematics in relation to their text 

structures. By doing this the model will show how these distinct genres coordinate the 

grammatical patternings of language and mathematics, in particular the choice of 

Articulations (see Section 3.4.2.3 in the previous chapter). As the genres described in this 

chapter necessarily involve mathematics, with language being optional (though common), 

they will be termed mathematical genres. This is not, however, to suggest that language is not 

involved; the genres that will be described are regularly realised bimodally. Indeed when 

language is used, it often plays a vital role in the construction of the text. The term 

mathematical genre is simply a shorthand to distinguish these genres from those that are 

primarily realised monomodally in language (such as those in Martin and Rose 2008). 

By coming at bimodal relations in terms of genre, mathematics and language can be seen not 

simply as isolated systems that each present their own meanings, but as coordinated resources 

that work together to achieve higher order meaning. The grammatical and discourse textures 

they assume and the intersemiotic relations they show can be understood as being driven 

largely by the genre-based functions they jointly realise. This perspective provides a 

complementary angle on language-mathematics relations to the discourse-semantic and 

grammatical model developed by O’Halloran. Moreover, it allows for a characterisation of 

whole texts and the purposes to which they are put to use. Indeed once the model of genre has 

been built, it will be deployed as a means to map the changes in the use of mathematics in 

physics through schooling. This map will allow for a broad interpretation of the role of 

mathematics in building knowledge in physics, and of its utility as a semiotic resource in 

general. 
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The chapter is organised around two main themes. Sections 4.1 - 4.3 will build a model of 

genre based on the axial principles laid out in the previous chapters. This will involve 

considering the basic elemental genres and genre structures that are jointly realised by 

mathematics and language, as well as the possibility these genres have for complexing in 

larger texts (section 4.2). It will also discuss how the description fits into an overall Systemic 

Functional framework for genre (section 4.3). The following section (4.4) will change focus 

and consider the second theme for the chapter: the use of mathematics for building 

knowledge in physics. The grammar and genre models developed in this and the previous 

chapter will be used to map the changes in the types of mathematics in use in physics through 

schooling and the text patterns that emerge from them. To explore how these patterns 

organise the knowledge of physics, they will be interpreted using the dimension of Semantics 

from Legitimation Code Theory (LCT) (Maton 2014. See chapter 2 Section 2.3). LCT 

Semantics provides a nuanced understanding of how the various resources of mathematics 

allow physics to build integrated and generalised knowledge, while at the same time 

remaining in contact with its empirical object of study. Bringing the two approaches together 

provides a method for understanding the kinds of mathematics used in physics, why they are 

used and what the payoff is for physics as a discipline. It will reveal the powerful utility of 

mathematics, and move toward answering the simple question: why is mathematics used in 

physics? 

By focusing on each of these themes, the chapter will develop a large scale model of 

mathematics in use and its disciplinary affordances (Fredlund et al. 2012) for physics. Before 

moving onto the description proper, however, we must review the place of genre in the 

general theory of Systemic Functional Semiotics. 

 

4.1 Genre in Systemic Functional Semiotics  

The previous chapter laid out the principles that guide description in this thesis. It argued that 

descriptions must in some way bring out the specific functionality of the resource under study, 

that they must be able to be compared with descriptions of other resources, and finally that 

they must be based upon explicit methods of argumentation so that they can be compared and 

judged in relation to competing descriptions of the same resource. This required that each 

resource be described on its own terms and that any category proposed be justifiable in terms 

of the system being studied. These principles were not intended just for the grammatical 
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description in this thesis, but for the semiotic description in general. The implication of this is 

that just as we needed to be hesitant about carrying over the macrotheoretical categories of 

metafunction and rank from English to mathematics, so should we be hesitant about 

unquestioningly carrying over a stratum such as genre and the stratification hierarchy this 

implies. To justify the ranks, nestings and metafunctions proposed in Chapter 3 we used an 

axial perspective whereby each category was emergent from the interplay of paradigmatic 

and syntagmatic axes. This kind of axial justification can be used for the development of 

strata as well. Reasoning along these lines, for a new level to be proposed, it must arise from 

a distinct system-structure cycle (Martin 2013). This means there must be a distinct set of 

choices that have their own structural realisations. For this system structure cycle to be 

considered a level, as opposed to a metafunction, it must indicate a distinct unit to those of 

other levels. For this level to be considered a stratum, as opposed to a rank or nesting, its 

units must distinguish themselves from other system structure cycles not through 

constituency, but through abstraction. Strata do not map onto constituent units – phonology is 

not a part within a lexicogrammatical whole and lexicogrammar is not a part within a 

discourse semantic whole – rather they provide levels of meaning without any definite 

relation between the units they map on to (though as Martin 1992a points out, as one moves 

higher in strata, the units tend to get bigger). For a stratum to be proposed, therefore, it must 

have its own systems, structures and units related through abstraction to other strata (see 

Section 2.4.4 for a more detailed discussion). 

The description developed below will show that these criteria for a stratum can be satisfied 

for mathematical texts. The question that arises from this, however, is why we should 

consider such a description as being at the stratum of genre, as opposed to discourse 

semantics or any other stratum. The justification for this lies in the conceptualisation of genre 

as a connotative semiotic (Martin 1992a: 493, developing Hjelmslev 1943 and Barthes 1967, 

1973). A connotative semiotic is a semiotic resource that has another semiotic as its 

expression plane. In contrast, a denotative semiotic system that has its own expression plane 

(see Chapter 2, Section 2.1.1). For example the denotative semiotic of language has 

phonology and/or graphology as its expression plane. As well as this, Cléirigh also suggests 

that body language (kinology) can be conceptualised as another expression of language 

(Cléirigh in prep., Martin 2011a, Zappavigna et al. 2010). On the other hand, genre (in 

Martin’s terms) does not have a distinct system such as phonology, graphology or kinology 

as its expression plane, but rather uses language as its expression The result of this is that 
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genre (and register in Martin’s conception) is not language; rather it functions as the content 

plane of a distinct semiotic system in which language is the expression plane. 

The question that arises here is whether we should recognise multiple types of expression 

plane realising a single system. Language, for example, is realised by two: phonology and 

graphology (and arguably a third, kinology or body language) If language can be realised by 

multiple expression planes, this leaves open the possibility for the connotative semiotics of 

register and genre to also be realised by multiple expression planes at the same time. Indeed 

if we accept body language as an expression form of language, we have in fact already 

allowed for this possibility. For our description of mathematical genres, then, we need to 

explore the possibility that they are realised by more than one system of expression form (i.e. 

the denotative semiotics of mathematics and language). This is the position this chapter will 

take. It will be justified in more detail in Ssection 4.3 once mathematical genre systems have 

been presented. 

 

4.2 Genres of mathematics and language 

Texts involving mathematics show a regular progression of meaning. The previous chapter 

showed that when multiple mathematical statements are presented in sequence, they show 

complementary patterns of Theme (left side of statements) and Articulation (right side of 

statements). Articulations tend to show change as the text progresses, while the Themes (left 

side) tend to remain relatively stable. This pattern emerges in spite of the fact that there is in 

principle free variation in terms of ideational meaning regarding whether expressions are 

placed on the left or right side of the statement. Indeed this division of labour was one of the 

primary reasons for the introduction of the functions Theme and Articulation. The Theme, 

showing relative stability, maintains the text’s hold on its field, and shows each statement’s 

relevance to the surrounding co-text. Articulations, on the other hand, show some kind of 

progression, which was said to coordinate more with genre staging. Text 4.1 from a senior 

high school text book illustrates this. The text provides a solution to the problem: A ball 

weighing 500g rolls down a hill with an acceleration of 3.0 ms
-2

. What is the net force acting 

on it?
42

 

                                                           
42

 Many of the examples in this chapter respond to some sort of question or problem such as this. These 

questions are not included in the formal genre systems built through this chapter, however they appear quite 
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Taking the downhill direction as positive and applying Newton’s Second Law to the ball: 

              ,             

        

         

                

Text 4.1 (a) de Jong et al. (1990: 252) 

Focusing on the sequence of mathematical statements beginning with        , we see that 

the Theme (    ) is kept constant through ellipsis. This Theme (glossed as the net force) is 

introduced in the question this text answers, which asks for the net force to be found. The 

Themes are thus showing the relevance of the statements to the overall text. The Articulations 

(right side), on the other hand, display change; they begin with pronumerals (ma) before 

moving onto numbers (       ) and then to numbers with units and a direction 

(              ). The opening statement (       ) presents a technical equation, one that 

is being taught in this section of the textbook as the starting point for the following statements. 

The second statement (        ) shifts the text to a numerical form by substituting two 

numbers from the initial written paragraph (0.5 and 3.0) in for the m and a in the first 

statement. These numbers are taken from the preceding paragraph, where m is specified as 

equalling 0.5 kg, and a is indicated as 3.0 m s
-2

.  The final statement completes the 

calculation of the net force and indicates the final result (1.5 N) including the direction of the 

net force downhill (bringing language back into the fold). 

The sequence of mathematical statements relies on the initial paragraph that primarily 

involves language. The initial equation         arises from the technical nominal group 

Newton’s Second Law in the second clause, the numbers substituted into the second line are 

developed from the opening two equations in the paragraph, and the direction in the final 

statement (downhill) derives from opening clause. The opening paragraph works with the 

sequence of mathematical statements to function as a single coherent whole. Within this 

whole, however, different sections play distinct roles. 

                                                                                                                                                                                     
regular in their own right, and are of course vitally important for student assessment. It is likely they form part 

of a larger bimodal (or multimodal) macrogenre, whereby they realise a stage we could call ‘Problem’, with the 

mathematical genres built in this chapter embedded in some sort of ‘Solution’ stage. 
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Mathematical texts such as this are framed by two stages that in effect determine the form of 

the rest of the text. These stages provide the beginning and end points of the calculation that 

in turn govern the path through which the calculation moves. In Ttext 4.1 the opening 

paragraph indicates the situation in which the calculation takes place. This stage also provides 

the starting point for the calculation by specifying the opening technical equation,        . 

This stage, which we will call the Situation, provides the assumed understandings from which 

the text proceeds. It characterises the parameters of the calculation, by including the 

mathematical formula being used (in Text 4.1        , Newton’s Second Law), the known 

numbers (e.g.               ,            ), and other information relevant to the 

calculation (in Text 4.1’s case, the downhill direction is specified as being positive). In Text 

4.1, the full Situation is realised by: 

Taking the downhill direction as positive and applying Newton’s Second Law to the ball: 

              ,             

        

 

Its counterpart in framing the text is the final Result. In text 4.1 this is realised by the final 

statement, (    )                . The Result is the culmination of the previous 

calculation and in some sense provides the overall raison d’être of the text. Indeed, if we take 

the informal definition of genre in Martin and Rose (2008) as a ‘staged, goal-oriented social 

process’, we can treat the Result as the goal to which the text is orienting. In Text 4.1, by 

quantifying the     , the text has answered the initiating question that was posed: What is the 

net force acting on it [the ball]? As it is the end goal of the text, Results necessarily occur in 

every completed text. Without one, the purpose of the text is frustrated.  

The two stages, Situation and Result, thus give the beginning and end points of Text 4.1. 

Together they determine the form of what comes between them. In this text, the second last 

statement,             , is the only stretch of discourse not included in the Situation or 

Result. Rather than giving the initial parameters or the final result this statement provides an 

intermediary stage that shifts the Articulations from pronumerals (ma) to numbers (       ).  

The stage realised by this statement we will call Reorganisation. The Reorganisation details 

the manipulation of the equations and numbers in the Situation, on its way to the final Result. 

This stage provides the ‘working out’ students are asked to do in order to show how they 
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completed the calculation. It is relatively standard practice (at least in Australia), for some 

marks to be awarded to students if their Reorganisation stage is correct, even if the final 

Result is not. The Reorganisation stage is, however, optional (despite what teachers try to 

instil as good practice); when the movement between the Situation and Result is relatively 

straight forward, it is often left out. In Text 4.1 the Reorganisation is realised by only a single 

statement. However in principle it can be expanded indefinitely. Nonetheless, the use of a 

Reorganisation indicates a level of explicitness often useful for both teaching and assessment. 

Using these stages, we can now analyse Text 4.1 as: 

 

Taking the downhill direction as positive and applying Newton’s 

Second Law to the ball:               ,             

 

        

 

Situation 

 

         

 

Reorganisation 

 

                Result 

 

Text 4.1 (b) de Jong et al. (1990: 252) 

 

4.2.1 Optional stages in mathematical genres 

Text 4.1 shows a relatively basic mathematical genre with little elaboration involving its 

Situation, Reorganisation and Result staging. Although it is most common for these three 

stages to occur in a text, Situations (as well as Reorgnisations) are in fact optional. The 

absence of either of these stages tends to occur in larger texts involving longer sequences of 

mathematical genres (genre complexes, see Section 4.2.3), where information typically given 

in the Situation can be assumed from preceding co-text, or where the level of explicitness 

provided by the Reorganisation stage is not needed. Focusing first on texts without the 
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Reorganisation stage, we see that these are most commonly realised by a single statement 

involving three expressions. As the distinction between genre and grammar is one of 

abstraction rather than constituency (Martin 2013), the realisation of a genre in a single 

statement presents no theoretical roadblocks (compare simple language genres such as stop 

signs or no smoking signs). As well as tending to be realised in a single statement, genres 

with only a Situation and Result often do not involve language. Text 4.2 provides an example 

of this from a student response in a university exam: 

 

  
 

 
                     

Situation Result 

 

Text 4.2 University student response  

 

In this text, the Situation is given by the first two expressions that specify the equation being 

used (  
 

 
). The following expression (             ) skips straight to the Result, 

without an intervening expression that substitutes numbers for 
 

 
 . This kind of construction is 

not uncommon, as the Reorganisation stage is in a sense superfluous to the overall goal of the 

text. It is an intermediary stage that adds an extra level of explicitness to the path between the 

Situation and the Result; but is not the important take-home message. Nonetheless, the 

Reorganisation stage is common both in pedagogical texts and in student work, as each 

context can benefit from added explicitness. For students, they can show their ‘working out’ 

(i.e. how they achieved their Result); indeed marks are often given for the working itself. In 

pedagogical texts, it provides extra scaffolding to help students complete the calculation.  

Texts without a Reorganisation stage, on the other hand, are not concerned with the full 

explicitness of how the Result was achieved. The calculations involved are usually straight 

forward and involve only a small number of variables. The lesser need for explicitness is 

related to their position within larger genre complexes. In these texts, the entire genre 

performs the intermediary function of quickly producing a Result which can be used in 

following text. In this case, the way the Result is calculated is not particularly important; it is 

the Result that is needed.  
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In mathematical texts, there appears to be an unmarked preference for statements to include 

only two expressions (a Theme and a single Articulation). When there are more than two 

expressions (multiple Articulations), the final Articulation has informational prominence, 

while the preceding Articulations are backgrounded. Following this interpretation of the 

statement, texts where the Situation and Result are realised in a single statement have their 

Result realised by the final Articulation, while part of the Situation is realised by the 

preceding Articulation. This foregrounds the Result, while backgrounding the relations that 

are used to achieve the Result (
 

 
 in Text 4.2). There are thus two main points of prominence: 

the Theme that holds onto the field ( ) and the final Articulation that realises the Result 

(             ). With only a Situation and a Result, the text takes a further step in 

backgrounding the Reorganisation by omitting it altogether. By conflating the Situation and 

Result with the Theme and Articulations in the grammar, the genre utilises the structural 

organisation of the statement to augment its own meaning making potential. It is organising 

its staging to coincide with textual prominence inherent in the statement. 

Less common than texts without a Reorganisation are those without a Situation. These texts 

occur when the information normally given in the Situation (the starting equation, known 

numerical values etc.) can be assumed, often because they have been given in the previous 

co-text (the preceding genre). Text 4.3 from a senior high school student exam response 

shows an example of this: 

 

                               Reorganisation 

 

               

 

Result 

 

Text 4.3 Senior high school student response 

 

In this text, the starting equation is not given in pronumerical form, nor are the known 

numerical values specified initially. Rather, the text begins with a Reorganisation stage that 

involves a numerical Articulation, and concludes with the Result. As in the texts without a 
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Reorganisation stage, those without a Situation stage tend to occur as part of larger sequences 

of mathematical texts and offer a relatively brief path to the final Result. The unmarked 

organisation of mathematical genres thus appears to involve a (Situation) ^ (Reorganisation) 

^ Result structure. Where meanings can be assumed or the level of explicitness a full 

structure provides is not needed, the Situation and Reorganisation can be omitted. 

There is one final stage that often occurs in mathematical texts that acts as a kind of coda to 

the text as a whole. This stage, that we will call the Interpretation, reformulates the 

mathematical Result as language; in doing so, the Interpretation highlights its significance for 

the progression of meaning in a larger text, thereby foregrounding the important information 

or ‘take-home message’ of the text. As we will see in section 4.4.3 this stage is particularly 

important for the development of knowledge in physics, as it allows mathematical Results to 

be named, described and reconciled with the broader field-specific meanings made through 

language. Text 4.4, from a junior high school textbook, shows an example of a text involving 

each of the four stages, Situation ^ Reorganisation ^ Result ^ Interpretation: 

 

The acceleration of a car which comes to rest in 5.4 seconds from a 

speed of 506 km/h is: 

                     
               

          
 

 

Situation 

 

 
       ⁄

     
         ⁄  ⁄   

 

Reorganisation^Result 

 

This negative acceleration can be expressed as a deceleration of 93.7 

km/h/s.  

 

Interpretation 

 

Text 4.4 (a). Haire et al. (2000: 114) 

These four stages provide the basic modular structure of mathematical texts. They involve a 

multivariate structure whereby each stage performs a distinct function. From these, we can 

build the preliminary network of mathematical genres shown in Figure 4.1. 
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Figure 4.1. Partial system of mathematical genres 

 

In the following sections, we will extend this basic system to show the range of possible 

variation in mathematical texts. The first step is to consider two types of mathematical genre 

that cross-classify the options shown in Figure 4.1. 

 

4.2.2 Types of mathematical genre 

The texts we have seen so far have all worked toward numerical Results. That is, each of 

their Results have been realised by statements with numbers in their Articulations. These 

texts belong to a specific type of mathematical genre that we will call quantification. 

Quantifications are common through schooling from junior high school onwards and allow 

for the measurement of a specific instance of the object of study. They are not, however, the 

only mathematical texts that occur. The alternative to quantifications is texts that remain in 

pronumerical form; we will call these derivations. These texts are not concerned with 

numerically measuring an instance of their object of study, but rather with developing new 

relations among technical symbols. Derivations begin to appear later on in schooling than 

quantifications (see Section 4.4), and in general require knowledge of a larger set of technical 
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equations than quantifications. Text 4.5 shows a derivation from a senior high school 

textbook. 

 

Consider two colliding objects, as shown in Figure 3.54 [not shown YJD]. Let the velocities 

before collision be  ⃗⃗  and   ⃗⃗  and those after collision be   ⃗  and  ⃗  . 

From Newton’s Third Law, the force of B on A ( ⃗  ) and the force of A on B ( ⃗  ) are related 

by: 

 ⃗     ⃗   

   ⃗      ⃗  

  ( ⃗   ⃗⃗ )

 
  

  ( ⃗   ⃗⃗ )

 
 

Since the time of interaction is the same for both objects, we have: 

  ( ⃗   ⃗⃗ )     ( ⃗   ⃗⃗ ) 

Rearranging, we find: 

   ⃗⃗     ⃗⃗     ⃗     ⃗  

  

 This equation shows that: 

  

The vector sum of the momenta of the objects before collision 

equals the vector sum of the momenta after collision. 

 

 Momentum has been conserved in the collision! 

 

Text 4.5 (a) Warren (2000: 125) 

In general terms, derivations have the same structure as quantifications. Each of the four 

stages, Situation^Reorganisation^Result^Intepretation, occur in the same sequence and with 
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the same possibilities for optionality. The Situation sets up the starting point for the 

derivation, including the relevant variables and equations, the Reorganisation rearranges the 

equation given in the Situation (though without substituting numbers in as in quantifications), 

the Result is the end goal to which the text is orienting, and the Interpretation highlights the 

significance of the Result in language. The structural analysis for Text 4.5 is as follows: 

 

Consider two colliding objects, as shown in Figure 3.54 [not shown YJD]. Let 

the velocities before collision be  ⃗⃗  and   ⃗⃗  and those after collision be   ⃗  and 

 ⃗  . 

From Newton’s Third Law, the force of B on A ( ⃗  ) and the force of A on B 

( ⃗  ) are related by: 

 ⃗     ⃗   

 

Situation 

 

   ⃗      ⃗  

  ( ⃗   ⃗⃗ )

 
  

  ( ⃗   ⃗⃗ )

 
 

Since the time of interaction is the same for both objects, we have: 

  ( ⃗   ⃗⃗ )     ( ⃗   ⃗⃗ ) 

 

Reorganisation 

 

Rearranging, we find: 

   ⃗⃗     ⃗⃗     ⃗     ⃗  

 

 

Result 

 

This equation shows that: 

The vector sum of the momenta of the objects before collision 

equals the vector sum of the momenta after collision. 

 

 Momentum has been conserved in the collision! 

Interpretation 

 

Text 4.5 (b) Warren (2000: 125) 
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Although the general structure of both quantifications and derivations is the same, the 

realisations of certain stages are markedly different. These differences in realisation reflect 

the different social purposes of the two genres and provide the main reasoning for their 

separation as distinct genres. To explore this, we will consider each in turn. 

 

4.2.2.1 Quantifications 

Quantifications occur earlier than derivations in physics teaching. They begin to appear at the 

beginning of junior high school physics (~ 12-16 years old) and by senior high school are 

very common in both student work and textbooks (~ 16-18 years old). As mentioned above, 

they aim to achieve a numerical Result in order to measure an instance of the object of the 

study. This involves a pronumerical Theme (the variable being measured) and a numerical 

Articulation, as shown by the Result of the quantification in Text 4.1: (    )                . 

As this Result illustrates, the Articulation also usually involves units of measurement (here N, 

glossed as Newtons, the units of force). If the Theme involves a vector (a number involving a 

direction shown by bold     , see Section 3.4.5), the Result will also include a direction, 

downhill. 

As this suggests, the choice of quantification strongly constrains the possibilities for the 

realisation of the Result in ways that are distinct from the derivation. To show this distinction, 

we can subclassify the Result of a quantification as a Numerical Result (for subclassification 

of functions see Huddleston 1981, Halliday 1961 and Appendix A). The insertion of a 

Numerical Result, specified in these terms, is thus the key criterion for distinguishing 

quantifications from other genres. It is not just the Result, however, that is affected by the 

choice of quantification. Since it provides a link between the Situation and Numerical Result, 

the Reorganisation is also constrained in its possible realisations. In order to move from the 

initial pronumerical statement in the Situation (e.g.        ) to the Numerical Result, the 

Reorganisation of a quantification must substitute numbers into the initial equation. These 

numbers are often indicated in the Situation or in the previous co-text. We will see in the 

following section that this type of Reorganisation is in marked contrast to that of a derivation. 

Accordingly we will also subclassify the Reorganisation of quantifications as the Substitution. 

The other two stages, Situation and Interpretation, do not have distinctive realisations for 

quantifications as opposed to derivations and so will not be subclassified. We can now 
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present this more delicate structure with an analysis of Text 4.6, taken from the same page of 

a junior high school textbook as Text 4.4. 

 

A car travelling at 60 km/h which increases its speed to 100 km/h 

in 5.0 seconds has an average acceleration of: 

                     
               

          
 

 

Situation 

 

 
     ⁄

     
 

 

Substitution  

 

       ⁄            

 

Numerical Result 

 

That is, on average, the car increases its speed by 8.0 km/h each 

second. 

Interpretation 

 

Text 4.6. Haire et al. (2000: 114) 

 

The overall organisation of quantifications and their typical realisations are summarised in 

Table 4.1 with an example from an undergraduate university textbook.
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quantification 

Aims to provide a numerical result measuring an instance of the object of study. Regularly realised by both language and mathematical symbolism. 

Stages Features Example 

 

Situation 

(optional) 
Situates the quantification in its co-text and context. As 

part of this it often: 

- Provides numerical values for variables. 

- Gives the symbolic equation to be used. 

Suppose mercury atoms have an excited energy level 4.9eV above the ground 

level. An atom can be raised to this level by collision with an electron; it later 

decays back to the ground level by emitting a photon. From the photon formula 

      , the wavelength of the photon should be: 

  
  

 
 

 

 

Substitution 

(optional) 

Replaces symbols in the Articulation with numbers from 

the Situation, co-text or field specific knowledge. Often 

will include multiple lines rearticulating the statement. 

 
(               ) (         

 
)

     
 

           

 

Numerical 

Result 

Culmination of the quantification. Gives the result of the 

calculation. Usually has a pronumerical Theme and a 

numerical Articulation. The Articulation may also include 

units and a direction. 

 

 

                

 

Interpretation 

(optional) 

 

Reinterprets the mathematical result in language. Indicates 

the significance of the Numerical Result. 

This is equal to the wavelength that Franck and Hertz measured, which 

demonstrates that this energy level actually exists in the mercury atom. Similar 

experiments with other atoms yield the same kind of evidence for atomic energy 

levels. Franck and Hertz shared the 1925 Nobel Prize in physics for their research. 

 

Table 4.1 Stages and typical features of quantifications. Example from Young and Freedman (2012: 1300).
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4.2.2.2 Derivations 

In contrast to quantifications, derivations do not develop a Numerical Result. Rather, they 

remain in pronumerical form. The goal of a derivation is not to measure a specific instance of 

the physical world, but to derive a new set of relationships between technical symbols in the 

field. For this reason, derivations play a significantly different role in knowledge building to 

quantifications (see section 4.4). Derivations begin to appear toward the end of junior high 

school physics, but become a regular feature by senior high school. Like quantifications, the 

degree to which derivations rely on language can vary. For example, Text 4.5 above utilises 

language in each stage. The language in 4.5 makes the steps taken through the derivation 

more explicit. 
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Consider two colliding objects, as shown in Figure 3.54 [not shown YJD]. Let the velocities 

before collision be  ⃗⃗  and  ⃗⃗  and those after collision be   ⃗  and  ⃗  . 

From Newton’s Third Law, the force of B on A ( ⃗  ) and the force of A on B ( ⃗  ) are related 

by: 

 ⃗     ⃗   

   ⃗      ⃗  

  ( ⃗   ⃗⃗ )

 
  

  ( ⃗   ⃗⃗ )

 
 

Since the time of interaction is the same for both objects, we have: 

  ( ⃗   ⃗⃗ )     ( ⃗   ⃗⃗ ) 

Rearranging, we find: 

   ⃗⃗     ⃗⃗     ⃗     ⃗  

  

 This equation shows that: 

The vector sum of the momenta of the objects before collision 

equals the vector sum of the momenta after collision. 

 

 Momentum has been conserved in the collision! 

Text 4.5 (a) Warren (2000: 125) 

 

On the other hand, Text 4.7 from the same textbook uses relatively little language, limiting it 

to the Situation and final Interpretation, as well as some conjunctive relations: 
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To show the equality of these two different statements of Newton’s Second Law [referring to 

previous co-text YJD], consider the following: 

 ⃗    ⃗ 

     ⃗  
 ⃗   ⃗⃗

  
           

 ⃗  
 ( ⃗   ⃗⃗)

  
 

 
  ⃗    ⃗⃗

  
 

 
   ⃗

  
 

Force is the time rate of change of momentum as stated by Newton! 

Text 4.7(a) Warren (2000: 123) 

 

Like quantifications, derivations begin with a Situation in which the starting equations are 

specified. In Text 4.7, this involves a sentence of language situating the derivation within its 

co-text (To show the equality of these two different statements of Newton’s Second Law, 

consider the following), as well as two equations:  ⃗    ⃗ and  ⃗  
 ⃗⃗  ⃗⃗⃗

  
. These two equations 

are the two different statements of Newton’s Second Law referred to in the linguistic phase of 

the Situation. As these equations have not been derived or developed internal to the 

derivation, but rather have been presented as starting points, they are considered part of the 

Situation; i.e. they are the basis upon which the rest of the text develops. Following the 

Situation there are two equations that realise the Reorganisation:  ⃗  
 ( ⃗⃗  ⃗⃗⃗)

  
 and  

  ⃗⃗   ⃗⃗⃗

  
. 

The first of these equations,  ⃗  
 ( ⃗⃗  ⃗⃗⃗)

  
, combines the two initial equations in the Situation 

by replacing the  ⃗ in the opening equation ( ⃗    ⃗) with the Articulation of the second 

equation ( ⃗  
 ⃗⃗  ⃗⃗⃗

  
) to produce  ⃗  

 ( ⃗⃗  ⃗⃗⃗)

  
. This is followed by a rearrangement of the 

Articulation to produce  
  ⃗⃗   ⃗⃗⃗

  
. A final manipulation of the Articulation produces the final 

Result,  
   ⃗⃗

  
, which is reinterpreted in language in the Interpretation stage: Force is the time 

rate of change of momentum as stated by Newton! 
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As with quantifications, the choice of derivation strongly controls the possible realisations of 

both the Result and the Reorganisation. In this genre, the Result remains in pronumerical 

form and rarely includes either units or a direction. To distinguish this from the 

quantification’s Numerical Result, we will call the Result of a derivation a Symbolic Result. 

Similarly, the Reorganisation of a derivation holds a distinct realisation. As the statements in 

both the Situation and the Symbolic Result are pronumerical, the Reorganisation also remains 

pronumerical. This stage is therefore not concerned with substituting in numbers like it is in 

quantifications. Rather it involves rearranging the equations that have so far been presented in 

order to show new relations. For this reason, we will subclassify the Reorganisation of a 

derivation as the Rearrangement. With this more delicate structure, we can reanalyse Texts 

4.5 and 4.7 as follows. 
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Consider two colliding objects, as shown in Figure 3.54 [not shown YJD]. Let 

the velocities before collision be  ⃗⃗  and   ⃗⃗  and those after collision be   ⃗  and 

 ⃗  . 

From Newton’s Third Law, the force of B on A ( ⃗  ) and the force of A on B 

( ⃗  ) are related by: 

 ⃗     ⃗   

 

Situation 

 

   ⃗      ⃗  

  ( ⃗   ⃗⃗ )

 
  

  ( ⃗   ⃗⃗ )

 
 

Since the time of interaction is the same for both objects, we have: 

  ( ⃗   ⃗⃗ )     ( ⃗   ⃗⃗ ) 

 

Rearrangement 

 

Rearranging, we find: 

   ⃗⃗     ⃗⃗     ⃗     ⃗  

 

 

Symbolic Result 

 

This equation shows that: 

The vector sum of the momenta of the objects before collision 

equals the vector sum of the momenta after collision. 

 

 Momentum has been conserved in the collision! 

Interpretation 

 

Text 4.5 (c) Warren (2000: 125) 
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To show the equality of these two different statements of Newton’s Second 

Law, consider the following: 

 ⃗    ⃗ 

     ⃗  
 ⃗   ⃗⃗

  
           

Situation 

 

 ⃗  
 ( ⃗   ⃗⃗)

  
 

 
  ⃗    ⃗⃗

  
 

Rearrangement 

 

 
   ⃗

  
 

Symbolic Result 

 

Force is the time rate of change of momentum as stated by Newton! Interpretation 

 

Text 4.7(b) Warren (2000: 123) 

 

Derivations are highly valued in physics. They are regularly used for student assessment in 

later years and are a mainstay of the knowledge practices in classrooms and textbooks. A 

large component of their value arises from their specific role in knowledge building through 

their development of new relations. These relations not only build new knowledge through 

mathematics, but also regularly lay the basis for the development of linguistic technicality. 

We can see a glimpse of this from Text 4.8, a derivation that immediately follows Text 4.7 in 

a senior high school textbook. 
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IMPULSE 

As we have just seen, we can write Newton’s Second Law as: 

 ⃗  
(   ⃗)

  
 

Situation 

 

Rearranging this equation we can write: 

 ⃗    (  ⃗) 

 

Symbolic Result 

 

Impulse (   ⃗  ) is equal to the change in momentum of the object upon 

which the force is applied. 

 

The SI unit of impulse is newton second (N.s). This unit is hence an 

alternative unit for momentum (see earlier).  

 

It follows that the same impulse can result from either a small force applied 

for a long time or a large force applied for a short time; the changes in 

momentum will be the same in both cases. 

Interpretation 

 

Text 4.8 (a) Warren (2000: 123) 

 

The opening equation of this derivation,  ⃗  
(   ⃗⃗)

  
  is taken from the Symbolic Result of the 

previous derivation (Text 4.7). This is then reorganised to produce the final Result shown in 

the box:  ⃗    (  ⃗). Crucially for our discussion, the final Interpretation reinterprets this 

Symbolic Result in language, and in doing so, introduces a new piece of linguistic 

technicality, Impulse. Impulse is used to name one of the relations developed in the derivation 

( ⃗  ), and is immediately elaborated linguistically in relation to other technical terms (i.e. 

change in momentum and force) and given units (newton second N.s.). The derivations used 

in Texts 4.7 and 4.8 have not only developed new relations within mathematics but have also 

engendered new linguistic technicality. We will consider this text again in Section 4.4, but 

importantly for the discussion here, the derivation genre has provided a framework through 

which meanings built in one resource can be built upon and expanded by those of another. 
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The bimodal nature of derivations (and quantifications) is thus crucial for their knowledge 

building potential.  

We can now provide an overview of the derivation genre and its stages in Table 4.2. The 

example is a university student exam response solving the problem: 

Using Bernoulli’s principle, explain why a wind blowing horizontally across the top surface 

of an open, upright umbrella can cause it to invert.
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derivation 

Aims to develop a new symbolic relationship by deriving a new mathematical statement. Regularly realised by both language and mathematical symbolism. 

Stages Features Example 

Situation 

(optional) 

Situates the derivation in its co-text and context. As 

part of this it often: 

- Specifies the initial equations to be used 

- Introduces symbols or techniques for 

deriving the result. 

 

Let p1 be the pressure above the umbrella, and p2 be the pressure below it. 

        
 

 
   

          
 

 
   

  

 

      

Rearrangement 

(optional) 

Rearranges the initial equations, through 

substituting one set of relationships in for another, 

or manipulating the equation. Often will include 

multiple lines rearranging the statement. 

    
 

 
   

     
 

 
   

  

      
 

 
 (  

    
 ) 

Symbolic Result Culmination of the derivation. Gives the result of 

the manipulation of the statements. Will have 

pronumerical symbols in both the Theme and 

Articulation. 

 

Since      ,             

 

  

Interpretation 

(optional) 

Reinterprets the mathematical result in language. 

Indicates the significance of the Symbolic Result. 

Since the pressure above the umbrella is less than the pressure below it. Air is 

“pulled” up towards the lower pressure area, because the umbrella is blocking the 

path of the air, it is pulled up as well, inverting the umbrella in the process. 

 

Table 4.2 Stages and typical features of derivations. Example from university student exam response.
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The full system of elemental mathematical genres can now be presented in Figure 4.2. 

Following Halliday (1961), subclassification of structural functions will be shown through a 

subscript, e.g. ResultNumerical . 

 

 

Figure 4.2. Network of elemental mathematical genres 

 

Now that we have developed this model, we can reflect on the relations between the grammar 

and genres of mathematics. In particular, we can return to the progression of Articulations in 

relation to the Theme. As we have discussed above, the Theme provides stability, anchoring 

each statement to its co-text and field. Articulations, on the other hand, show flux. They 

progress in a relatively consistent manner. This section has shown that this progression 

patterns with genre staging. The seemingly predictable logogenetic ordering of statements is 

a consequence of these statements occurring within different stages of mathematical genres. 

Moreover, the number of statements in sequence is largely determined by the number of 

optional stages in these genres. Finally, the choice of numerals or pronumerals within the 

Articulation is almost entirely determined by the choice of quantification and derivation. By 

developing a model of both genre and grammar, we are able to predict and explain highly 
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consistent patternings of mathematics and language across texts. So far, however, we have 

only considered relatively short texts instantiating a single elemental genre. As emphasised in 

Chapter 3, much of the power in mathematics comes from its regular ability to complex 

indefinitely. This complexing ability occurs not just in grammar but also within genre. The 

next section will thus develop a model of genre complexing that will allow an understanding 

of larger mathematical texts. 

 

4.2.3 Mathematical genre complexing 

The texts we have seen so far have been relatively short. They have ranged from single 

statements to about a page and have all moved toward a single Result. In stark contrast to the 

grammar of mathematics, the multivariate structure of mathematical genres constrains the 

possibility for indefinite iteration. But mathematical genres regularly interact with other 

genres to build more complex texts. To see this, we can consider Text 4.9 that we saw in the 

previous chapter, from a senior high school textbook. This text provides a solution to the 

prompt: 

Calculate how much weight a 50 kg girl would lose if she migrated from the earth to a colony 

on the surface of Mars. 

 

On the earth: 

 

               

        

                 

On Mars: 

 

             

        

                 

 

Loss of weight = 490 – 180 = 310 N. But there is no loss of mass! 

Text 4.9 (a) de Jong et al. (1990: 249) 

At first glance, this text looks like a relatively straightforward quantification; it begins with 

symbols and ends with numbers. However the text does not unfold through a single sequence 

of Situation ^ Substitution ^ Numerical Result ^ Interpretation. Rather, it comprises a string 

of three quantifications, framed with boxes below. 
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On the earth: 

               

        

                 

 

 

 

 

On Mars: 

             

        

                 

 

Loss of weight = 490 – 180 = 310 N. But there is no loss of mass! 

 

Text 4.9 (b) de Jong et al. (1990: 249) 

 

Looking at the structure of each of these genres confirms them as quantifications in their 

own right. 

 

On the earth: 

               

quantification1 

 

Situation 

 

        Substitution 

                 Numerical Result 

 

On Mars: 

             

quantification2 

 

Situation 

 

        Substitution 

                 Numerical Result 

 

Loss of weight = 490 – 180 = 310 N.  

quantification3 

Substitution^ Numerical Result 

But there is no loss of mass! Interpretation 

 

Text 4.9 (c) de Jong et al. (1990: 249) 

This larger text can be accounted for as a sequence of quantifications. These three 

quantifications however work together to form a larger whole. None of the genres on their 

own functions to answer the problem on the basis of the information provided; but together 
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they do. The question thus arises what the relationship is among the quantifications that allow 

them to function as a coherent whole?  

We can first consider the relation between the two opening quantifications, prefaced with On 

the earth and On Mars. Neither of these genres are dependent on the other. Although they 

appear to take a very similar form, the numbers and equations they use are gathered not from 

each other, but from the initial problem (50 in each Substitution) and from field-specific 

knowledge (the equations in each Situation and the 9.8 and 3.6 in the Substitutions). Because 

they are not dependent on each other, neither requires the other in order to be completed 

Indeed their sequence could be swapped around with no consequences for (ideational) 

meaning. 

Their independence from one another contrasts with their relation to the final quantification. 

This quantification necessarily depends on the first two quantifications having been 

completed. The two numbers used in the Substitution stage of the final quantification (490 

and 180) are taken from the Numerical Results of the first two quantifications. If these first 

two quantifications had not been completed, the final quantification would be stranded at the 

Situation stage. We can thus make a distinction between the dependency relation involving 

the final quantification, and the coordination relation between the first two quantifications.  

Because the final quantification is dependent on both previous quantifications having been 

completed, its relation is not with each of the other quantifications individually, but with both 

of them. In other words, there are two layers of complexing in this text. The highest layer 

involves the final quantification and the first two as a pair, with the second layer relating the 

first two quantifications individually. If we mark the dependency relation using Greek letters 

,  etc. and the coordination relation using Arabic numerals 1, 2 etc. the analysis of Text 4.9 

becomes: 
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On the earth: 

               

 
 

 

 

 

1 

 
quantification1 

 

Situation 

 

        Substitution 

                 Numerical Result 

 

On Mars: 

             

2 

 

 

quantification2 

Situation 

        Substitution 

                 Numerical Result 

 

Loss of weight = 490 – 180 = 310 N.  

 

 

quantification3 

Substitution^ Numerical Result 

But there is no loss of mass! Interpretation 

 

Text 4.9 (d) de Jong et al. (1990: 249) 

 

Using Greek letters and Arabic numerals to mark the complexing relations follows Halliday’s 

analysis of the taxis distinction for complexing relations in English grammar (Halliday and 

Matthiessen 2014). The division between hypotaxis and parataxis is one based on whether the 

complexing relation shows dependency and differentiation in status, or whether it does not. 

Hypotaxis indicates relations where one unit is dependent upon another and holds a lower 

status. Hypotaxis is thus more closely aligned with the traditional category of subordination 

(though it is by no means the same; subordination generally also includes what SFL would 

term embedding, Martin 1988). Parataxis, on the other hand, shows an equal status relation 

whereby neither unit is reliant on the other; they each may occur independently of the other. 

Parataxis thus more closely resembles the traditional category of coordination. The 

dependency and status distinction indicated by the taxis in Halliday’s description of English 

grammar shows strong affinities with the relations we have seen between mathematical 

genres, and so is useful for the discussion of these relations. 

At first glance, this appears to be a subtly different interpretation of genre complexing to 

Martin’s (1994) model. In this model, genre complexing is interpreted not in terms of taxis, 
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but in terms of Halliday’s logico-semantic relations (Halliday and Matthiessen 2014). In 

doing so, Martin is able to distinguish between projection, where one genre reports or quotes 

what another says, and expansion, where a genre in some way develops the meaning of 

another. Projection relations do not appear to occur between mathematical genres (though see 

section 4.3 where they do occur between exclusively linguistic genres and mathematical 

genres) and so will be set aside here. Within expansion, Martin is able to distinguish between 

three types of expansion: elaboration, where a genre in some sense restates or exemplifies the 

meanings of another; extension, where new a new genre adds meaning to another; and 

enhancement, where a genre embellishes or qualifies the meaning of another. 

Martin suggests that at the level of genre there does not appear to be a distinct taxis system 

independent of the logico-semantic types. That is, each logico-semantic relation also 

indicates a particular dependency (taxis) relation. For Martin, enhancement relations (marked 

by 
X
) show a higher degree of dependency and differential status (that is, hypotaxis), whereas 

extension relations (marked by +) show equal status and lower degrees of dependency 

between genres (parataxis) (c.f. Nesbitt and Plum 1988 who show a strong probabilistic 

association between each of these variables within English clause complexing). This model 

allows an alternative interpretation of the relations between mathematical genres above, 

whereby the first two quantifications simply add meaning to the other with their sequence 

determined textually (that is, they show an extension 
+
 relation), while the final quantification 

enhances the meanings of the others with its ordering necessarily controlled by the ideational 

meanings being developed (it shows an enhancement relation 
X
). 

It remains to consider whether mathematical genres can elaborate one another (=). Martin 

suggests that at the level of genre elaboration primarily involves one genre exemplifying 

another. For mathematical genre complexing we can see that this does indeed occur, 

primarily as a relation between derivations and quantifications. Text 4.10 shows an example 

of elaboration from a university physics lecture. 

 

 

 

 



204 

 

 

          
  

    
 

 derivation 

Situation ^ Rearrangement 

     
  

    
 

Symbolic Result 

 

                    

= quantification 

Situation 

               Numerical Result 

 

Text 4.10 University Lecture genre complex 

 

In this text, the quantification provides an example of a calculation utilising the Symbolic 

Result of the previous derivation. The exemplification relation is in fact marked by the 

elaborating abbreviation e.g. Although the second genre utilises the Result from the first to 

develop its own Result, elaboration relations such as these show relatively equal status with 

minimal dependency, in comparison to enhancement relations. The second text is not relying 

on the first in order to be completed, as is the case for enhancement; rather it is exemplifying 

the first. Put another way, the entire genre complex is not geared toward the Result shown in 

the final quantification, as is the case in Text 4.9. Rather the derivation and quantification are 

offering two angles on the same scenario. For this reason, the elaboration relation is treated as 

closer to parataxis than hypotaxis. 

The analysis of complexing relations between mathematical genres is thus similar to that of 

expansion relations between linguistic genres. Elaboration and extension show relatively 

equal status and so can be interpreted as having a paratactic structure, while enhancement 

shows unequal status and so can be interpreted as having a hypotactic structure. In our 

analysis, to emphasise both the taxis distinction and the logico-semantic relations, elaboration 

and extension will be indicated by Arabic numerals 1, 2 etc. as well as being marked by = 

(elaboration, e.g. 
=
2) or + (extension, 

+
2), while enhancement will be marked by both Greek 

letters , , and   (e.g. 
X
). Text 4.11 shows an analysis of a larger mathematical text from a 

senior high school student exam response to the problem: 
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Calculate the number of photons,             , which are required to transfer 2.0 

MeV of energy. 

 

 
                 

 
 

1  
 

derivation 
Situation 

   
  

 
 

 

Symbolic Result 

 

 
                 

             
 

X
 quantification1 

Substitution 

 
                       (           ) 

  

Numerical Result 

 

                               

+2 
 

quantification2 
Substitution 

                   
 

Numerical Result 

 

              
           

              
 

X
   quantification3 

 
Substitution 

             
                (         ) 

Numerical Result 

 

Text 4.11 High school student exam response 

 

Analysis reveals that hypotactic relations between mathematical genres are progressive 

(Halliday 1965). That is, the head of the complex (the ) comes first, with each dependent 

genre following afterwards (in contrast to, say, the English nominal group that is regressive, 

with  in final position and the dependents preceding). This progressive structure makes 

sense as it is the opening genre (in particular its opening Situation) that determines the 

following sequence of Results. Any particular final Numerical Result necessarily arises from 

the starting Situation of the opening genre. At the highest layer in Text 4.11 above for 

example (the first three genres as  and the final as 
x
), the starting equations and substituted 

numbers in  determine what the final Numerical Result will be:              

               (         ). Any change in the numerical values in  will almost definitely 
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change the final Numerical Result. Any change in the starting equations will likely change 

the sequence of genres needed to produce the final Numerical Result. The  thus plays a 

large determining role in the development of the text. 

Once the  has laid down its starting point, the genre complex does not simply meander in 

any direction, however. It moves toward a definite finishing point, which is shown by the 

final genre in the complex (in particular the Result of the final genre). If the final genre is a 

quantification, then at some stage the intervening genres must shift to numerical terms. If the 

final genre is a derivation, they will remain in pronumerical form. The final genre thus 

determines in broad terms what the form the genre complex will take, while the opening 

genre determines its starting point. Between the two, they strongly characterise how the genre 

complex will progress. Any intermediate genres work simply to specify the path between the 

two. 

Incorporating the complexing relations and the generalisations of taxis into the system of 

mathematical genres leads to the network in Figure 4.3.
43

 

                                                           
43

 In order to formalise the different type of complexing relations, it is necessary to insert a generalised function 

X at the primary delicacy feature [mathematical genre]. This function is then subclassified as 1 (if paratactic) or 

 if hypotactic. 
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Figure 4.3 Full network of mathematical genres
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4.3 Genre as a distinct stratum 

The genre description presented above has been developed with an eye to the large scale 

variation in mathematical texts. It proposes bimodal realisation across mathematics and 

language as an avenue for understanding their interaction. It built a model of the types of 

internal structuring of mathematical genres and the influence these have on the mathematical 

grammatical patterns, and thus it offered a relatively predictable link between the 

grammatical and genre-based text patterns. Finally it considered the relations between genres 

as complexing relations in order to open the possibility for indefinitely long texts built 

through recursion. This model presents a detailed understanding of mathematical texts which 

as we will see in Section 4.4 can provide a basis for understanding more broadly the role of 

mathematics in the discourse of physics. But it has not yet fully resolved the question raised 

in Section 4.1 as to why we can consider this model as being at the stratum of genre, on a 

deeper level of abstraction from the grammatical stratum built in the previous chapter. 

This takes us to the core of the descriptive apparatus used to justify each of the 

macrotheoretical categories in this thesis. Throughout the description axis has been used to 

develop the large-scale descriptive architecture of mathematics, including its metafunctional 

organisation and its levels of rank and nesting within the grammar. The thesis has avoided 

assuming macrotheoretical categories, without firm justification on axial grounds. This same 

method can be used to justify stratal organisation involving mathematics. As discussed in 

Section 4.1 and Chapter 2, grounds for proposing a distinct level (rank, nesting or strata) are 

that it must have its own system-structure cycle (Martin 2013); there must be a distinct set of 

paradigmatic choices with their own syntagmatic realisations. The networks built in the 

chapter to this point satisfy this criterion. They present a series of choices with their own 

structural realisations that are in principle largely independent of the grammar (although they 

may skew the probabilities of grammatical systems as part of their realisation). Once a 

system structure cycle has been established as a new level, the question remains what type of 

level it is. It is possible that the system developed be interpreted as another level within the 

grammar (some sort of rank of genre) rather than a distinct stratum in itself. 

To determine whether the network is another level within the grammar (i.e. implicating 

another rank or nesting) or whether it is a separate stratum, we need to consider its relation to 

extant grammatical networks. If it is a higher rank or nesting within the grammar, it should be 

related in some way through constituency (whether developed through a multivariate 
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structure or through univariate layering). In constituency hierarchies, structural functions at 

the higher level (i.e. Situation, Reorganisation, Result and Interpretation) must be realised by 

a one or more of the units at the level below (Halliday 1961). If we focus just on the 

mathematical symbolism, this means each genre stages needs to be realised by either a single 

statement or a whole-multiple of statements. The examples we have already seen show this is 

not the case. For example, Text 4.4 (reproduced below) shows multiple stages can be realised 

by single statements. In this example, both the Reorganisation and Result stages are realised 

in a single stage (shown boxed). 

 

The acceleration of a car which comes to rest in 5.4 seconds from a 

speed of 506 km/h is: 

                     
               

          
 

Situation 

 

 

 
       ⁄

     
         ⁄  ⁄    

 
 

Reorganisation^Result 

 

This negative acceleration can be expressed as a deceleration of 93.7 

km/h/s.  

 

Interpretation 

 

Text 4.4 Reorganisation and Result stages realised in one grammatical statement 

 

This example makes it clear there is not a strict constituency relation between genre stages 

and grammatical statements. Equally importantly, the genre network is realised by both 

mathematics and language (in this case English), with both resources potentially working 

together to realise a single stage (such as the Situation in Text 4.4). In contrast, both the SFL 

descriptions of English (Halliday and Matthiessen 2014, Martin 1992a) and of mathematical 

grammar (in this thesis) are exclusively monomodal. The genre system cannot be included 

within either semiotic resource’s grammatical stratum if we want to keep these grammatical 

systems in some way distinct. The conclusion is thus that the system developed in this 
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chapter is not related through constituency to the grammatical systems, but through an 

interstratal realisation of a more abstract stratum. That is, the relation between the genre 

system and the grammatical systems is not that of distinct ranks or nestings internal to the 

grammatical stratum, but one of distinct strata.  

As discussed in Section 4.1, the fact that the genres are realised by both language and 

mathematics indicates that this stratum is a connotative semiotic. It is a semiotic resource in 

its own right, realised by two other semiotic resources, mathematics and language. This 

stratum thus constitutes part of a communicative plane above language and mathematics 

(Martin 1992:501). In Martin’s model, the communicative plane above language involves 

both register and genre (the third stratum in Martin 1992a, ideology, no longer forms part of 

this model, Martin 2006b). So far, however, we have only justified that it is a stratum within 

the communicative plane. We have yet to justify axially that it is a stratum of genre, as 

opposed to register or another stratum all together. To do this, we will consider the role of 

mathematical genres in larger texts that also include linguistic genres. 

In physics and many other disciplines, it is standard that linguistic and mathematical genres 

co-occur in the same text. For example, Text 4.12 shows an excerpt from a two page spread 

in a junior high school text book constituted by a genre complex involving five elemental 

genres: two linguistic genres (both reports) and three mathematical genres (all 

quantifications). For ease of reference, each elemental genre is numbered with Roman 

numerals I-V.
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Speed is a measure of the rate at which an object moves over a distance. In 

other words, it tells you how quickly distance is covered. The average 

speed can be calculated by dividing the distance travelled by the time 

taken. That is: 

              
                  

          
 

In symbols, this formula is usually expressed as: 

  
 

 
 

 

1 

 

1 

 

report 

 

I 

 

Which unit? 

The speed of vehicles is usually expressed in kilometres per hour (km/h). 

However, sometimes it is more convenient to express speed in units of 

metres per second (m/s). The speed at which grass grows could be sensibly 

expressed in units of millimetres per week. Speed must, however, always 

be express as a unit of distance divided by a unit of time. 

 
+
2 

 

report 

 

II 

Some examples 

(a) The average speed of an aeroplane that travels from Perth to Sydney, a 

distance of 4190 km by air, in 5 hours is: 

  
 

 
 

 
       

   
 

          

 

=
2 

 

1 

 

q’cation 

 

III 

The formula can also be used to express the speed in m/s. 

  
 

 
 

 
           

        
  

(                                                    ) 

         

 

+
2 

 

q’cation 

 

IV 

(b) the average speed of a snail that takes 10 minutes to cross an 80 cm 

wide concrete paving stone in a straight line is: 

  
 

 
 

 
     

     
 

            

 

+
3 

q’cation 

 

V 

Text 4.12. Haire et al. (2000: 110-111) 
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Just as we considered the relations between mathematical genres in larger texts, so can we 

consider their relations with linguistic genres. Text 4.12 shows a relatively straightforward 

and coherent text that moves from linguistic genres (I-II) to mathematical genres (III-V). To 

understand the relation between the first two reports and the final three quantifications, we 

can heed the fact that the same complexing relations used for linguistic genres were used for 

mathematical genres. Reports I and II are related through extension (+) with one simply being 

added to the other. The following quantifications, however, gives examples of the application 

of the equation presented in the first report and the units presented in the second report. We 

can thus consider the relation between the reports and quantifications as one of elaboration 

(=). To account for this text, then, we have used the same relations for complexing between 

linguistic and mathematical genres as we used within each type. This suggests that we can 

generalise these relations across both types of genre. In addition, as far as projection is 

concerned, math genres can be projected by linguistic genres (although as discussed above 

they cannot themselves project linguistic genres). This is shown by the simple fact that 

throughout this chapter full mathematical genres from other sources have been used as 

examples. Each time a quantification or derivation has been exemplified it has been projected 

by the rest of the text. 

Looking systemically, we can thus generalise the complexing relations across both 

mathematical and linguistic genres as simultaneous with both these systems. The implication 

of this is that the systems of linguistic and mathematical genres can be interpreted as being on 

the same stratum. Viewed from this angle, the stratum of genre is thus a connotative semiotic 

realised through both mathematics and language. The two semiotic resources do not have 

their own individual communicative planes involving genre, but can be brought together 

through their joint role in realising a single stratum of genre. 

This conclusion can also be arrived at from another angle. As emphasised throughout the 

description, the realisation of mathematical genres is not just mathematics but also language. 

By the same token, report I in Text 4.12 shows that realisations of linguistic genres are also 

not simply limited to language. This report involves the presentation of two mathematical 

statements:               
                  

          
 and   

 

 
. This genre is not a mathematical 

genre of quantification or derivation; it does not move through a series of steps manipulating 

equations or substituting numbers in from a starting situation to conclude with a final Result. 

Rather it presents a description of the technical term speed, with one of its features being the 
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equation used to calculate it; it is a descriptive report (Martin and Rose 2008). Both linguistic 

genres and mathematical genres, therefore, can be realised by both mathematics and language. 

If mathematical and linguistic genres were separated into different unrelated strata, it is 

difficult to see how we could theoretically motivate this diversity of realisation. Thus through 

their realisation, the simplest solution is to allow a single stratum of genre coordinating both 

mathematics and language. 

From this conclusion, we can return to the issue raised earlier of how we can argue that the 

stratum involving mathematical genres is at the level of genre and not register. We can do 

this by showing that it is systemically simultaneous with linguistic genres and enters into 

complexing relations with them. They thus share the same stratum, i.e. the stratum of genre. 

Through axial argumentation, we have therefore been able to set up a stratal model for 

mathematics to complement the rank, nesting and metafunction models developed in the 

previous chapter. 

Mathematical and linguistic genres can therefore be brought into a single network with their 

shared complexing relations, shown in Figure 4.4. The network for linguistic genres is 

derived from Martin and Rose (2008) and Veel (1997). The division of complexing relations 

between parataxis and hypotaxis developed in Section 4.2.3 has been generalised here. 

Following Martin (1994), projection relations link genres of equal status, and thus have been 

grouped under parataxis. 
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Figure 4.4 Network of genre including linguistic genres, mathematical genres and complexing
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This network concludes the descriptive sections of this chapter. It presents the options for 

mathematical genres, and shows them in relation to linguistic genres. In doing so, it 

formalises a description based on axial foundations for both a stratal organisation of 

mathematics, and a single generalised stratum of genre that is realised by both mathematics 

and language. This stratal organisation supplements the metafunctional, rank and nesting 

organisation developed axially in the previous chapter to show the variability and 

functionality possible for mathematics in use. The full set of system networks across genre 

and grammar is presented in Appendix B. With the grammatical and genre descriptions 

completed, we can now turn to the other broad focus of this thesis, asking what role 

mathematics plays in the overall organisation of knowledge in physics. 

 

4.4 Mathematics for building knowledge in physics 

As we have seen, mathematics is pervasive in physics. It is used in both schooling and 

research, and it forms part of the high stakes texts students read to learn physics and those 

they write for assessment. Chapters 3 and 4 have shown mathematics involves its own 

distinct grammar and realises a unique set of genres. But why is it used in physics? As 

discussed in Chapter 2, this question has come to prominence from a recent concern in 

educational linguistics and social realist sociology with the structure of knowledge in 

academic disciplines (Christie & Martin 2007, Christie & Maton 2011). Various studies of 

science within the Systemic Functional tradition have shown that the natural sciences such as 

physics, along with academic discourse in general, are far removed from our everyday 

discourse (e.g. Martin & Veel 1998, Lemke 1990). The sciences tend to involve distinctive 

sets of factual genres (see Figure 4.4) and use language to construe both multi-tiered 

sequences of causality and deep taxonomies of composition and classification (Halliday & 

Martin 1993, Martin and Rose 2008, Veel 1997, see Section 2.2 chapter 2). From the 

viewpoint of Bernstein’s code theory, they can be characterised as ‘hierarchical knowledge 

structures’ that attempt to create very general propositions and theories, integrating 

knowledge to account for an expanding range of different phenomena (Bernstein 1999: 162). 

According to Legitimation Code Theory (Maton 2014), the principles underlying these 

knowledge structures emphasise epistemic relations between knowledge and its object of 

study, and downplay social relations between knowledge and its author or subject. At the 

same time, one of the most salient features of scientific discourse is its heavy use of non-
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linguistic semiotic resources, in particular mathematics (Parodi 2012). As this thesis has 

shown (see also O’Halloran 2005), mathematics organises its meanings in considerably 

different ways to language and thus offers a complementary system for construing the 

knowledge of science.  

The prevalence of mathematics and the distinctive structuring of scientific knowledge begs 

the question as to whether these two attributes are related. Does mathematics contribute to 

science’s ability to develop integrated and abstracted models of the natural world, and does it 

aid in linking these models to empirical studies of their object of study? If so, how does 

mathematics do this? Framed in Fredlund et al.’s terms (2012), what are the disciplinary 

affordances of mathematics for science? Since physics appears the scientific discipline in 

which mathematics is most widely used (Parodi 2012), we can probe these questions by 

tracing mathematics as it develops through physics schooling. This section will follow 

mathematics as it shifts through primary (elementary) school, junior high school, senior high 

school and undergraduate university through the data collected in New South Wales, 

Australia (see Appendix C for details of the corpus), in order to understand the changing 

forms of mathematics and what this means for knowledge building in physics. 

Through schooling there is a distinct development in how mathematics is used. The changes 

across the years correlate with different roles mathematics plays in organising the knowledge 

of physics. To understand the impact these changes have, we will first map the development 

in terms of the Systemic Functional model developed in this thesis. These changes will be 

illustrated in terms of the distinct mathematical genres deployed, the primary grammatical 

organisation used, as well as mathematics’ intersemiotic interaction with language. To 

explore how these patterns organise the knowledge of physics, they will be interpreted using 

the Semantics dimension of Legitimation Code Theory (Maton 2014). LCT provides a 

complementary angle through which we can understand the structuring of knowledge, and 

has been used productively with SFL across a number of studies (see Maton and Doran in 

press 2017, Martin 2011b, Maton et al. 2015 for surveys of the dialogue between SFL and 

code theory). As explained in Chapter 2, Semantics is concerned with two main variables: 

semantic gravity, which explores the degree to which meanings are dependent on their 

context, and semantic density, which explores the degree of condensation of meaning in a 

practice (Maton 2014, Maton and Doran in press 2016a, b). Each of these will be reviewed in 

further detail as they become relevant in the chapter. Utilising these concepts from Semantics 

enables a nuanced understanding of how the various resources of mathematics allow physics 
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to build integrated and generalised knowledge, while at the same time remaining in contact 

with its empirical object of study. Bringing the two approaches together provides a method 

for understanding the kinds of mathematics used in physics, why they are used, and what the 

payoff is for physics as a discipline. 

To organise this section of the chapter, a subsection will be devoted to each of the primary, 

junior high, senior high and undergraduate university sectors of schooling (as these are 

organised in the state of New South Wales, Australia). For primary and junior high school, 

the data under study arises purely from textbooks, while for senior high school and university 

physics, the textbook data is complemented by classroom discourse and student exam 

responses (see Appendix C for details of the corpus). The progression from primary school 

through to university physics will develop an expanding understanding of the utility of 

mathematics. Throughout the section, presentations of what type of mathematics occurs and 

its frequency will be discussed in terms of tendencies and typicalities. It is not meant as a 

detailed or quantitative report of the mathematics used in physics at each stage; it is used 

simply as a vehicle to understand mathematics’ role in knowledge building. For this reason, 

the examples chosen are illustrative; they are selected to demonstrate the explanation of the 

functionality of mathematics, rather than as representative examples for any particular level 

of schooling. The final section will pull together the strands raised in each section to 

characterise physics as a whole when viewed from mathematics.  

 

4.4.1 Mathematics in primary school physics 

The late primary school years (ages ~10-12) are the first to introduce mathematics in the 

service of physics.
44

 At this stage, mathematics is not a prominent feature of the discourse; 

the physics covered depends more heavily on language and images to construe its knowledge. 

Nonetheless, the mathematics that is used gives a glimpse of how it will organise the 

knowledge of physics in later stages. In order to contribute to the knowledge of physics, 

however, it first must be invested with technical meaning from physics. Text 4.13 shows an 

example of how this can take place, via mathematics’ interaction with language. In this text 

                                                           
44

 In primary school in New South Wales, Australia, physics is not a stand-alone subject. Rather, it forms part of 

a core science syllabus that also includes other natural sciences such as chemistry, biology (Board of Studies 

NSW 2012). From early primary school, mathematics is taught separately as a topic area independent of 

scientific concerns. 
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mathematics is being used to introduce the relationship between force, mass and acceleration 

known as Newton’s Second Law. 

 

FORCE EQUATION 

The relationship between force (F), mass (m) and acceleration (a) is summed up in the 

equation: 

     

This shows the force of an object depends on the combination of its mass and acceleration. 

This is why the impact of a slow-moving truck and a fast-moving bullet are equally 

devastating. Both have tremendous force – the truck because of its large mass, the bullet 

because of its huge acceleration. The equation can also be swapped: 

      

This shows the acceleration goes up with the force but down with the mass. 

 

Text 4.13 Farndon (2003: 19) 

 

The opening sentence of this text introduces three mathematical symbols, F, m and a. Each of 

these symbols are named using linguistic technicality: F is force, m is mass and a is 

acceleration. By naming these symbols, the text is investing them with technical meaning 

from the field. By encoding the symbols with instances of technicality in language, the 

symbols and linguistic technicality in effect become synonymous. The result is that changes 

in meaning in one semiotic resource, whether language or mathematics, necessarily changes 

the meaning of the other. For example, when Text 1 specifies that the force of an object 

depends on the combination of its mass and acceleration, language is indicating an 

unspecified dependency between force, mass and acceleration. As F, m and a have been 

made synonymous with these terms, this dependency necessarily transfers to the 

mathematical symbols. Similarly, any meanings built around these symbols in mathematics 

automatically implicates language. In      the relationship between the three symbols is 

given more precisely, specifying the dependency mentioned in language. Utilising the 



219 

 

covariate relations developed in Chapter 3 (Section 3.4.2.5) to describe the relations, F is 

directly proportional to both m and a. This means crudely that as either m or a increases, F 

does too at the same rate. Similarly, the other equation introduced,      , indicates that a 

is inversely proportional to m, meaning that if a decreases, m increases and vice-versa. As the 

sentence following this equation explains: This shows the acceleration goes up with the force 

but down with the mass. In this text, the meanings of each of force, mass and acceleration are 

now linked to the meanings of the others. This interaction between language and mathematics 

is a vital first step for mathematics to contribute to the knowledge of physics. Before it can 

perform the functions it does in later years, it must be invested with meaning from the field of 

physics. 

Even at this early stage, Text 4.13 shows that full mathematical equations are used, albeit 

rarely. By linking symbols in equations, precise relations are being set up that may hold 

across the entire field (in the next chapter, we will term these relation implication complexes). 

Indeed, when the relations between these symbols change, a change in the field is also 

signified. For example,      is applicable for classical ‘Newtonian’ mechanics, which, to 

put it crudely, involves the study of motion on a scale of size and speed comparable to that 

we experience in our everyday life. However, when moving to other fields of physics such as 

special relativity (concerning situations where speeds are close to the speed of light) and 

quantum mechanics (concerning the workings of very small things) the relations among these 

symbols are different. For each subfield of physics, relations specified in mathematics 

constitute one part of the knowledge of the field. 

The iterative univariate structure of mathematics is such that an indefinite number of symbols 

can be related in any one equation. Although in this early stage equations do not expand 

much beyond the three symbols shown in     , at later stages physics involves more 

complex equations such as:     
 

 
    

    

 
. The possibility for indefinite iteration 

allows mathematics to play a powerful role in physics as it allows large sets of technical 

relations to be distilled into small snapshots. 

As we have seen, even in this early stage, there is a give and take between language and 

mathematics in physics. Mathematics gains meaning by being encoded with technical 

meaning from the field. At the same time it develops meaning by setting up novel and precise 

relations among symbols that have been given technical meaning. 
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To conceptualise this burgeoning of meaning, we can enact the concept of semantic density 

from Legitimation Code Theory (Maton, 2014). Semantic density is concerned with the 

degree of condensation of meaning in an item. If an item has more meaning, it is said to have 

stronger semantic density (SD+); if it has less meaning it has weaker semantic density (SD–). 

A key metric for determining whether something has stronger or weaker semantic density is 

its degree of relationality (Maton and Doran in press 2016a): i.e. how many relations the item 

has with other items in a field. For example when introducing a term such as energy, it can be 

specified that it has subtypes of potential energy and kinetic energy. This sets up relations of 

classification between each of the terms, thus increasing their relationality and strengthening 

their semantic density. 

Viewed from this perspective, mathematics as used in primary school physics primarily 

works to increase the semantic density of physics, i.e. to build technical meaning. First, the 

individual symbols are invested with meaning from technicality in language, e.g. F is given 

the meanings of force. This strengthens the semantic density of the mathematical symbols. 

Beyond this, the symbols are developed in equations, such as in F = ma. These equations 

specify sets of relations between symbols, further strengthening their semantic density. Since 

these symbols are associated with linguistic technicality, this semantic density is transferred 

over to the linguistic realm as well. That is, the relations between F, m and a specified in the 

mathematics transfers back to the relations between their linguistic correlates, force, mass and 

acceleration. As these meanings constitute part of the field, this interplay between 

mathematics and language strengthens the semantic density of the field itself. 

At primary school, then, mathematics works to extend the semantic density of the field of 

physics. However as mentioned above, mathematics is only rarely used at this level. Physics 

at this stage relies more heavily on language and image to construe its knowledge. It is when 

moving into junior high school that mathematics comes into its own as a crucial component 

of physics. Not only is it used to a much larger degree, but the mathematics begins to be 

developed in quantifications (Section 4.2.2.1). This allows mathematics to function 

considerably differently to the way it does in primary school. 

 

4.4.2 Mathematics in junior high school physics 

Physics in junior high school (years 7-10, ages ~12-16) significantly increases its use of 

mathematics. While still relatively marginal in comparison to the use of language and images, 
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the fledgling use of quantifications present opportunities for physics to reach toward the 

empirical world. Quantifications are the key mathematical innovation for this stage and build 

upon the basis for knowledge development introduced in primary school to further enhance 

the possibilities for knowledge building of physics. As in primary school, mathematical 

equations and symbols are introduced and named, and thereby invested with technical 

meaning, which increases the semantic density of the field. An example of this, again 

involving the equation     , is shown in Text 4.14. 

 

Newton’s Second Law of Motion describes how the mass on an object affects the way that it 

moves when acted upon by one or more forces. In symbols, Newton’s second law can be 

expressed as: 

  
 

 
 

where a = acceleration 

F = the total force on the object 

m = the mass of the object.  

 

If the total force is measured in newtons (N) and the mass is measured in kilograms (kg), the 

acceleration can be determined in metres per second squared (m/s
2
). This formula describes 

the observation that larger masses accelerate less rapidly than smaller masses acted on by the 

same total force. It also describes how a particular object accelerates more rapidly when a 

larger total force is applied. When all of the forces on an object are balanced, the total force is 

zero. Newton’s second law is often expressed as F = ma. 

Text 4.14 Haire et al. (2000: 118). 

 

Text 4.14 again encodes technical meaning in individual symbols: a is equated with 

acceleration, F with the total force on the object and m with the mass of the object. As well 

as this, the full equation is named as Newton’s second law. The text continues to build 

meaning into the symbols and equation in the final paragraph, strengthening their semantic 

density. 
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Moving further into the page in which Text 4.14 is situated, mathematics is again used. This 

time, however, the text is not concerned with condensing meaning into the symbolism, but 

with using the mathematics to calculate the acceleration of a space shuttle taking off. As Text 

4.15 shows, this involves using a quantification. 

 

 Newton’s second law can be used to estimate the acceleration of the space shuttle at blast off: 

  
 

 
 

 
                   

            
 

          

In other words the space shuttle is gaining speed at the rate of only 3.2 m/s (or 11.5 km/h) 

each second. No wonder the blast off seems to take forever! 

Text 4.15 Haire et al. (2000: 119) 

 

As discussed previously, quantifications aim to produce numerical results that measure a 

specific instance of the object of study (which for physics is the physical world). The opening 

Situation orients the text to the problem it is calculating (in this case the acceleration of the 

space shuttle) as well as specifying the equation to be used. Moving through the Substitution 

that gathers numerical values form the previous co-text (not shown), the final Numerical 

Result (         ) completes the calculation. The Numerical Result allows the physics to 

be grounded in a specific instance of the empirical world; it allows it to move outside the 

realm of abstracted theory. The final Interpretation reconstrues the Result linguistically and 

relates it back to the acceleration of the space shuttle specified in the opening stage, as well as 

linking it to a more everyday, common-sense understanding of the motion of the space shuttle 

(No wonder the blast off seems to take forever!).  

The introduction of quantifications is the key marker that boosts the role of mathematics in 

junior high school in comparison to primary school. To understand the role of quantifications 

in physics, we can utilise the second concept from the Semantics dimension of LCT: 

semantic gravity. Semantic gravity is concerned with the degree to which meanings are 

dependent on their context. Stronger semantic gravity (SG+) indicates meanings are less 
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dependent on their context, whereas weaker semantic gravity (SG–) indicates greater context-

dependence. Semantic gravity and semantic density are independent variables that allow an 

understanding of how meanings vary in their relations to other meanings and to their context. 

Mathematical equations that do not involve numbers are not tied to any particular physical 

context.     , for example, describes an abstract set of relations that hold for a very large 

set of situations – essentially all physical situations that can occur in our everyday life. The 

equation does not, however, address any particular situation. It does not, for example, say 

how much force, acceleration or mass will occur at any particular instance, rather it simply 

shows their generalised relations. The equation, then, is characterised by relatively weak 

semantic gravity. 

On the other hand, the final equation in numerical form,( )          , precisely describes 

a specific situation. The numerical form of the equation does not mention anything about the 

generalised relationships between force, acceleration and mass, but measures a specific 

instance of acceleration. It is thereby characterised by relatively strong semantic gravity. The 

quantification genre thus involves a shift from weaker to stronger semantic gravity; it is a tool 

for gravitation (for strengthening semantic gravity, Maton 2014:129). This allows physics to 

keep in touch with its object of study. 

In junior high school physics, mathematics continues to strengthen semantic density by 

specifying equations and condensing them with technical meaning from language. At the 

same time, mathematics’ role in quantifications allows physics to strengthen its semantic 

gravity by reaching out to specific empirical situations. Both the use of quantifications and 

the encoding of technical meaning from language continues into senior high school. This 

stage sees a further innovation, the introduction of derivations, that highlights the increasing 

role of mathematics in building knowledge in physics. 

 

4.4.3 Mathematics in senior high school physics 

Senior high school (years 11-12, ages ~16-18) physics continues the trend of increasing 

reliance on mathematics. By this stage, mathematics is a crucial component of the high-stakes 

assessment in physics. Students must not only read mathematics as it is used in classrooms, 

textbooks and assessment, and in doing so, gain technical physical meaning, they must also 

write mathematics as a means to solving physical problems. In senior high school, the forms 
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of mathematics used in junior high school are consolidated, expanded and built upon. In 

terms of sheer quantity, there is an enormous increase in the number of equations introduced. 

Text 4.16, for example, shows a snapshot of slightly over a quarter of the forty-eight 

equations specified in the formula sheet of the final state-wide exam of high-school physics. 

 

 

 

Text 4.16 Board of Studies, Teaching & Educational Standards NSW (2014: 42) 

 

Each of the equations in this formula sheet must be understood by students to be successful in 

assessment. Although the equations themselves are given, there is no explication of what they 

mean, to which situations they apply or how to use them. They are technical equations that 

students need to understand in relation to the broader field. The equations build a very large 

complex of relations among technical meanings. The increase in equations arguably 

accelerates in future years, with a larger part of the technical meaning of physics organised 

through the mathematics deployed in the field. 

Complementing the increase in the use of mathematics, the complexity of quantifications also 

increases. In junior high school, it is typical for single quantifications to occur in isolation, 

but in senior high school it is common for larger quantification complexes to occur that aim 
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to produce a single result (see Section 4.2.3). Text 4.9, reproduced below, shows an example 

of this with each quantification boxed. 

 

On the earth: 

               

        

                 

 

 

 

 

On Mars: 

             

        

                 

 

Loss of weight = 490 – 180 = 310 N. But there is no loss of mass! 

 

Text 4.9 (c) de Jong et al. (1990: 249) 

 

The quantifications in this text all work toward achieving a single final result. The 

importance of quantification complexes such as the one in Text 4.9 is that they allow physics 

to calculate numerical results from relatively distant starting points. In single quantifications 

numerical values must be available for every symbol other than the one being calculated. For 

example, in Text 4.15, discussed in relation to junior high school, the aim was to calculate a 

(acceleration) from the equation   
 

 
. The numerical values of both F and m were known 

from the previous co-text, leaving only a to be determined. This allowed a to be calculated 

with a single quantification. In Text 4.9 from senior high school, on the other hand, 

calculation of the loss of weight requires that both the weight on Earth and the weight on 

Mars be known. These are not specified in the text and so require calculation through other 

quantifications. This can be seen from the fact that the Substitution in the final quantification 

(= 490 – 180) gathers its numerical values from the Numerical Results of the previous 

quantifications. Each of these quantifications use the formula:     . The symbols m 

(mass) and g (gravity on earth or Mars) are both known from the previous co-text allowing 

the weight on both Mars and Earth to be calculated. So based on the previously differentiated 

knowledge of the mass and gravity on both Mars and Earth, a sequence of quantifications can 

be used to calculate the loss of weight. 
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With regard to the knowledge of physics, the emergence of quantification complexes in 

senior high school builds upon the role of single quantifications used in junior high school. 

Single quantifications allow physics to reach from generalised theory to specific empirical 

situations. Based on single quantifications, however, empirical situations can be explored 

only if a relatively specific set of numerical knowledge was available. For example, if we 

wished to quantify the symbol F through the equation F =ma, with only a single 

quantification, we would need values for both m and a to complete the calculation. With 

quantification complexes, however, if these values are not known, we can do further 

calculations to find them. In principle, we could find F without initially knowing m or a, as 

quantification complexing allows these to be calculated first. Indeed this is what occurred in 

Text 4.9 above. To calculate the Loss of weight, both the weight on Mars and on Earth need 

to be specified. However initially, they weren’t known. Through quantification complexing, 

these values could be calculated first, and then used in the final quantification to complete the 

final Numerical Result. Quantification complexes thus allow a larger range of possible 

starting points for calculations than single quantifications. This allows knowledge that is 

further removed from the empirical object of study to be put to use. As the number of 

quantifications that can occur in a complex is in principle indefinite, this complexing 

provides a powerful tool for physics to reach toward its object of study from very distant 

starting points. 

As well as the introduction of quantification complexes and a greater reliance on mathematics, 

senior high school sees derivations come to prominence. As we have seen, derivations are 

concerned not with measuring specific empirical instances, but rather with developing new 

mathematical relations. Text 4.7, reproduced below, showed an example of this. 
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To show the equality of these two different statements of Newton’s Second Law [referring to 

previous co-text YJD], consider the following: 

 ⃗    ⃗ 

     ⃗  
 ⃗   ⃗⃗

  
           

 ⃗  
 ( ⃗   ⃗⃗)

  
 

 
  ⃗    ⃗⃗

  
 

 
   ⃗

  
 

Force is the time rate of change of momentum as stated by Newton! 

Text 4.7(c) Warren (2000: 123) 

 

The new equation developed in the derivation makes explicit relations between symbols 

implied but not yet specified in the field. Derivations are thus deployed to deepen the 

technical knowledge of physics. They develop and specify new sets of relations that become 

part of the field. These new relations can in turn be used in quantifications to extend the range 

of empirical situations accounted for by physics. Derivations are thus used not just to build 

new mathematical relations, but also to contribute to the development of new linguistic 

technicality. We have already seen an example of this in Text 4.8, reproduced below, a text 

that immediately follows Text 4.7. 
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IMPULSE 

As we have just seen, we can write Newton’s Second Law as: 

 ⃗  
(   ⃗)

  
 

 Rearranging this equation we can write: 

 ⃗    (  ⃗) 

 

Impulse (   ⃗  ) is equal to the change in momentum of the object upon 

which the force is applied. 

 

The SI unit of impulse is newton second (N.s). This unit is hence an alternative unit for 

momentum (see earlier [referring to previous co-text not shown YJD]). 

It follows that the same impulse can result from either a small force applied for a long time or 

a large force applied for a short time; the changes in momentum will be the same in both 

cases. 

Text 4.8 (b) Warren (2000: 123) (boxes in original). 

 

Text 4.8 begins with another short derivation. The opening equation  ⃗  
(   ⃗⃗)

  
  is taken from 

the Symbolic Result of the previous equation, and is reorganised to produce the final 

Symbolic Result,  ⃗    (  ⃗). As discussed in section 4.2.2.2, this Result is then 

reinterpreted in language in the Interpretation stage. In doing so, a new piece of linguistic 

technicality is introduced, that in some sense encapsulates the meanings made by the 

mathematical Result. The sequence of derivations has worked not simply to develop new 

relations in the mathematics, but to also develop new technical meaning in language. 

Derivations develop new equations by making relations which are otherwise implied in the 

field explicit. With the growth of technical symbols and equations, a large combinatorial 

potential arises. Each symbol carries around a large set of implied relations that can be 

brought to bear in any particular situation (considered in more detail in the following chapter). 
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For example, as discussed throughout, the equation      specifies relations between F, m 

and a. These relations remain even when one of the symbols is mentioned without the others, 

such as for F in   
  

 
 (Ek is glossed as kinetic energy, s as displacement). These two 

equations,      and   
  

 
, set up relations between F and ma, and F and 

  

 
 respectively. 

As both sets of relations hold at the same time, relations between ma and 
  

 
 can also be 

specified as    
  

 
, or rearranged,       . Derivations bring implicit relations between 

symbols into actuality.  

We can again interpret this in terms of the LCT dimension of Semantics. Derivations are 

tools that make new relations explicit, and lay a platform for the introduction of new 

linguistic technicality. In this way, they work to build meaning in the field. Whereas in earlier 

years, mathematics tends to encode technicality developed in language, in senior high school 

derivations build relations which have not yet been specified. Derivations thus strengthen the 

semantic density of the field; they are a tool for epistemological condensation (Maton 2014, 

Maton and Doran in press 2016b). This condensation role is particularly powerful. It allows 

mathematics to make explicit relations not previously known and to push into the new areas, 

thereby expanding the horizons of knowledge. When used in conjunction with quantifications, 

this new knowledge can be tested to see how usefully it construes the empirical world. 

Based on this understanding of derivations, we can now review them in relation to the 

increasing use of mathematics, and its relation to language. As we saw in primary school (and 

continued through junior and senior high school), language initially works to invest 

mathematics with technical meaning of physics. Drawing on this investment, derivations can 

then produce new relations which have not previously been made explicit. The relations in 

mathematics, and the symbols involved in them, can then be named in language. This 

transfers the meanings developed in mathematics back to language, which can in turn utilise 

its own ways of meaning making. By handing meaning back and forth in this way, 

mathematics and language work in tandem to considerably strengthen the semantic density of 

the field. 
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4.4.4 Mathematics in undergraduate university physics 

The jump to undergraduate university physics sees the reliance on mathematics to organise 

the knowledge of physics increase once more. In all subfields of physics at this level 

mathematics is in regular use. Students are expected to both read and write large 

quantification and derivation complexes to a degree far surpassing that of senior high school. 

However as well as simply using more mathematics, university physics changes the form of 

its mathematics to consolidate and extend its knowledge-building role. In particular, 

university physics begins to more readily deploy the operational component of the grammar 

realised through multivariate structures (see Section 3.4.7.2 of Chapter 3), in particular the 

unary operations of calculus. Although not be explicitly included in the grammar developed 

in the previous chapter, the general multivariate structuring of calculus follows the same 

principles as other operations in the operational component of the grammar. To see how this 

calculus is put to use, we will consider the derivation in Text 4.17 from a first year 

undergraduate university textbook. This derivation is excerpted from a much larger sequence 

and provides an intermediate step to a final Result further into the text (but not shown here). 

The equation numbers on the right of the text are those of the original. 
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Consider the following wave function for a wave of wavelength λ and frequency f moving in 

a positive x-direction along a string: 

 (   )      (     )      (     )   (                           ) (    ) 

Here        is the wave number and       is the angular frequency. (We used these 

same quantities for mechanical waves in Chapter 15 and electromagnetic waves in Chapter 

32.) The quantities A and B are constants that determine the amplitude and phase of the wave. 

The expression in Eq. (40.2) is a valid wave function if and only if it satisfies the wave 

equation, Eq. (40.1) [from previous co-text not shown YJD]. To check this, take the first and 

second derivatives of y(x, t) with respect to x and take the first and second derivatives with 

respect to t: 

  (   )

  
       (     )       (     )         (     ) 

   (   )

   
        (     )        (     )  (     ) 

  (   )

  
      (     )       (     )           (     ) 

   (   )

   
        (     )       (     ) (     ) 

If we substitute Eqs. (40.3b) and (40.3d) into the wave equation, Eq. (40.1) [not shown YJD], 

we get: 

       (     )        (     ) 

 
 

  
        (     )       (     ) (    ) 

 

Text 4.17 Young and Freedman (2012: 1329-1330) 

 

Each of the equations in this derivation involve at least three unary operations, including the 

trigonometric operations cos and sin, and a generic operation of  (   ) (described in Section 

3.4.3). Further to this, each uses a number of operators involved in calculus. These are shown 

by 
 

  
, 

 

  
, 

  

   
 and 

  

   
 in the Themes (left side) of equations (40.3a-d). These equations are 

excerpted below with the symbols involving calculus operators shown in bold. 
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  (   )

  
       (     )       (     )         (     ) 

   (   )

   
        (     )        (     )  (     ) 

  (   )

  
      (     )       (     )           (     ) 

   (   )

   
        (     )       (     ) (     ) 

 

Within calculus, these unary operators signal operations known as first derivatives, 
 

  
 and 

 

  
 

in 40.3a,c, and second derivatives, 
  

   
 and 

  

   
 in 40.3b,d. 

45
 These operators each modify the 

same Argument,  (   ), given in the Theme of the earlier equation (40.2). We will focus on 

the first of the operator 
 

  
 in the Theme of (40.3a): 

  (   )

  
       (     )       (     )         (     ) 

 

Like the other unary operators, 
 

  
 modifies the  (   ) given as the Theme of equation (40.2). 

By modifying this symbol, it necessarily changes what it equals. That is, in the first equation, 

 (   ) without modification, equals     (     )      (     ). With modification, 

however, 
  (   )

  
 equals       (     )       (     ). By modifying  (   ) with the 

calculus operator 
 

  
, the relations on the right hand side are also changing. 

For a student within a university physics course, the movement from the first equation to the 

second should be relatively straight forward. Students should by this stage should know how 

to manipulate equations when this operator 
 

  
 is applied (in New South Wales, Australia 

where the data was collected, this is taught in the penultimate year of high school). As such, 

the text shows no intermediate steps between equation (40.2) and equation (40.3a). The way 

                                                           
45

 For a full grammar that includes the operators of calculus, it would need to include both the univariate and 

multivariate structures shown by these operators. At the highest level, 
 

  
 functions as a multivariate unary 

operator on  (   ) to produce 
  (   )

  
. Within this however, each   (related to the change operator Δ) also 

functions as an operator, producing    and   . These in turn are related to each other by the univariate binary 

operation of division, shown by the vinculum ―. The tension between the multivariate and univariate allows a 

great deal more variability than can be discussed here. 
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the mathematics is manipulated when one takes the first derivative (when one applies  
 

  
) is 

assumed. Understanding the movement between these two equations goes to the crux of the 

role of multivariate structures in mathematics and their importance for the knowledge of 

physics. 

As discussed in Section 3.4.3 of the previous chapter, multivariate operators such as this can 

be equated to a set of binary relations. The example we used in chapter three was of the 

change operator Δ. This operator shows the differences between two specific points of the 

same variable. For example, if Δ modifies x to become Δx, it can be equated with      . In 

this expressions x1 and x2 are two instances of the same variable modified by Δ. Similarly, if 

Δ modifies y, this results in         , and if it modifies z it results in          and 

so on. The Δ thus encodes a set of ‘dummy’ relations that can be applied to the symbol it is 

modifying. This same principle applies for the calculus operators above. However whereas 

the change operator Δ encodes a single relation between two symbols,      , the calculus 

operator 
 

  
 encodes significantly more. Formally, the relations encoded by 

 

  
, when 

modifying y, are given by: 

  

  
    

   

 (   )   ( )

 
  

 

This immediately signifies a more complex set of relations to be applied. It includes larger set 

of binary relations (addition +, subtraction – and division shown by the vinculum ―), and 

compounding this, the relations also involve other multivariate unary operators, shown by 

each of    
   

,  (   ) and  ( ). Being multivariate operators, these also encode their own 

set of relations. Thus the multivariate operators of calculus are built upon other multivariate 

operators, which are in turn built upon other relations. There is thus a very large set of 

relations encoded into the single modifier 
 

  
.  

In practice, a series of shorthand procedures for manipulating equations are taught so the 

above equation is rarely used (at least in undergraduate level physics). Nonetheless, by 

modifying a symbol by 
 

  
 or any other calculus operation, a vast swathe of procedures and 

relations are immediately brought to the fore. These relations and procedures are distilled into 

the modifier in a similar fashion to technicality in language. However there is a significant 
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difference between linguistic technicality and the multivariate operators we see here. This 

revolves around the fact that in mathematics these operators are grammaticalised. They are 

both regular and relatively indelicate choices in the grammar that retain essentially the same 

meaning across most fields. This allows them to be applied across a large range of fields and 

variables. For university level physics, what this means is that large sets of grammaticalised 

relations are brought to bear on the technicality of the field, allowing for new possibilities for 

manipulation of the mathematics and a significant expansion of the combinatory potential of 

technical meanings. 

As with previous stages of schooling, we can interpret this shift in terms of the LCT variable 

of semantic density. As discussed previously, the key feature of semantic density is its degree 

of relationality; the number of relations any particular item invokes. Using this interpretation, 

the choice of a multivariate unary operator such as 
 

  
 dramatically increases the number of 

relations that an equation resonates out to. It thus provides a marker of significantly stronger 

semantic density. Notably, however, without modifying any particular symbol with technical 

meaning in physics, the relations invoked are entirely internal to the system of mathematics. 

They do not have any impact on physics’ relations to its object of study.
46

 Once they modify 

a technical symbol within physics, however, these relations become available to the field of 

physics. They can thus be utilised to link large constellations of meaning within the field, 

which can then in turn be manipulated by derivations or quantifications. The fact that these 

operators are grammaticalised as regular and indelicate choices applicable across a large 

range of fields pushes the power of mathematics for strengthening semantic density to a new 

level. The mathematics in university physics thus enhances the scope of knowledge building 

in physics, by both building upon the grammar and genres available in previous years, and 

more readily utilising a new grammatical form. 

 

4.4.5 Mathematics in the knowledge structure of physics 

The survey of mathematics in physics schooling undertaken here reveals its powerful utility. 

Through its interaction with language, each symbol can garner technical meaning, which can 

                                                           
46

 In terms of the 4K model of LCT (Maton 2014), these operators (and seemingly the entire operational 

metafunction of mathematics) are primarily concerned with discursive relations – relations between items 

internal to the theory. The multivariate unary operators thus indicate relatively strong discursive semantic 

density.  
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then be related to an indefinite number of symbols in a single snapshot. Its univariate 

structure provides the potential for an indefinite array of technical meanings to be related, 

while its multivariate structure allows sets of procedures and relations to be employed across 

a vast array of fields. When used in derivations, physics can employ the large combinatory 

potential of mathematics to bring together relations in the field that have not yet been 

specified, and in doing so develop new knowledge in the field. When used in quantifications, 

mathematics can use these relations to account for specific instances in the real world. This 

opens the possibility for theory to be tested against empirical data and the physical world to 

be predicted. 

In LCT terms, the mathematics used in physics is a tool for both condensation (strengthening 

semantic density) and gravitation (strengthening semantic gravity). This allows meanings to 

be related and proliferated in a large number of combinations, while maintaining the capacity 

to connect with the empirical world. Without the strong potential for condensation, technical 

meanings would have a limited possibility for combination. This means that they would be 

tied to their contexts and become segmentalised. Physics would thus lose the potential to 

develop generalisable theories that account for a broad range of phenomena. In contrast, 

without the possibility for gravitation, physics would have no capacity to reconnect with its 

object of study; there would be no counter-balance to ensure the proliferation of theory 

maintains relevance in the study of the physical world. The condensation and gravitation 

shown by mathematics arise from the two genres introduced in this chapter. On the one hand, 

derivations strengthen the semantic density of both individual symbols and the field. The 

semantic density developed in mathematics can be condensed into language and vice versa¸ 

allowing each semiotic resource to utilise its own meaning-making resources. Mathematics 

thus provides a platform for physics’ hierarchical knowledge structure by incorporating a tool 

for creating general propositions and theories, and integrating knowledge across a range of 

phenomena (Bernstein 1999). On the other hand, quantifications strengthen the semantic 

gravity of a text and give physics the ability to link abstracted theory to specific instances. 

This expanded semantic range gives an avenue for physics to strengthen its epistemic 

relations between its knowledge and its object of study (Maton 2014). Through mathematics, 

theory can be tested by data, and data can be predicted by theory. 

We can now return to the question posed at the beginning of this chapter: why is mathematics 

used in physics? Mathematics is used because it provides tools for both theoretical 
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development and bringing theory to bear on data. It is thus an instrument for expanding the 

frontiers of knowledge and for keeping that knowledge in touch with the empirical world. 

 

4.5 Genre coordinating mathematics and language 

This chapter set itself the goal of understanding the interaction of mathematics with language. 

It approached this problem from the perspective of genre to show the large scale patterns of 

mathematics and language in producing larger texts. As with the previous chapter, however, 

it did not simply assume a stratum of grammar, but rather sought to derive it axially. In doing 

so, it showed that a productive model of genre can incorporate both primarily mathematical 

and linguistic genres in a single stratum. That is, it showed that a generalised genre network 

realised by both mathematics and language can coordinate the large scale text patterns at 

work in physics. 

These genres and the broad grammatical patterns that realise them were then put to work 

mapping the changes in mathematics through physics schooling. This map allowed a broad 

understanding of the development of mathematics, and its utility for organising the 

knowledge of physics. Mathematics was shown to aid both building new technical meaning 

and linking this to the empirical world. It lays the basis for both the internal and external 

languages of description for physics. 

Chapter 3 and 4 have thus put forward a comprehensive model of mathematics in Systemic 

Functional terms. It has shown predictable relations between large text patterns and the 

grammatical organisation of mathematics, and derived in a methodologically consistent 

manner a stratal, metafunctional, rank and nesting architecture of mathematics. This 

architecture allows mathematics to develop its own meaning making patterns to relate 

technical meanings in physics. The question remains, however, what precisely these meaning 

making patterns are. From the model of grammar and genre, what can we say about the 

specific affordances of mathematics in contrast to language? This will be the focus of the 

following chapter. It will firstly look at mathematics and language from the perspective of the 

register variable field, before considering in detail the final semiotic resource considered in 

this thesis, image. The following chapter will thus round off the three perspectives on the 

discourse of physics in this thesis: grammar, genre and field, and move from a bimodal 

discussion to a trimodal one.
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CHAPTER 5 

Images and the Knowledge Structure of Physics 

 

Physics is often spoken of as the archetypical natural science. As discussed in Chapter 2, 

within the tradition of code theory it is regularly positioned as the prototypical hierarchical 

knowledge structure (e.g. Christie et al. 2007, Maton and Muller 2007, O’Halloran 2007a), 

with both strong verticality (the ability to develop ever more integrative and general 

propositions encompassing larger sets of phenomena) and strong grammaticality (the ability 

to specify relatively unambiguous empirical referents, Muller 2007). Physics is thus 

characterised as being able to link theory to the empirical world and to generate new 

knowledge that subsumes current understandings. This characterisation offers a useful insight 

into the overarching knowledge structure of physics, however it does not allow us to see the 

organising principles that underpin this structure. In other words, it does not specify the 

mechanisms that produce this structure, nor how we ‘see’ this in data. As Maton (2014: 109) 

argues, categorising a discipline such as physics in terms of knowledge structure is good to 

think with, but it does not provide analytical tools to understand how this comes about. 

In order to access the organising principles underpinning the knowledge structure of physics, 

this chapter will pick up the thread introduced in the previous chapters and consider the 

discourse of physics through the Legitimation Code Theory dimension of Semantics; in 

particular, the variables of semantic gravity (SG) and semantic density (SD).
47

 Recapping the 

explanations in Chapters 2 and 4, semantic gravity is concerned with the degree to which 

meanings are dependent on their context (with stronger semantic gravity, SG+, being more 

dependent on context and weaker semantic gravity, SG –, being less dependent) while 

semantic density is concerned with the degree of condensation of meaning in a term or 

practice (with stronger semantic density, SD+, indicating more condensation of meaning and 

weaker semantic density, SD –, indicating less condensation of meaning) (Maton 2014, 

Maton and Doran in press 2016a). The chapter proposes that a hierarchical knowledge 

structure’s ability to establish integrative and general propositions encompassing large sets of 

empirical phenomena depends in large part on being able to generate strong semantic density. 

                                                           
47

 More specifically, it will focus on epistemic semantic gravity and semantic density (Maton 2014, Maton and 

Doran in press 2016a,b). This chapter will not consider the values, morals or aesthetic meanings prevalent in 

physics that are more associated with axiological semantic density. 
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Similarly, the ability to produce unambiguous empirical referents arises largely from its 

broad range of semantic gravity. If we consider physics as a hierarchical knowledge structure, 

we should thus be able to see in its discourse the potential for strong semantic density, and for 

movement between a large range of semantic gravity (such as those shown in Conana 

2015).
48

 

The previous chapter gave an insight into the role mathematics plays in organising the 

knowledge of physics by tracing the development of mathematical genres and grammar 

through physics schooling. This chapter will build on this base by characterising the 

discourse of physics in terms of the images it uses in relation to mathematics and language. 

By doing so, it continues the progression traced through the previous chapters. Chapter 3 

considered mathematical symbolism in isolation and focused on its grammatical organisation. 

Chapter 4 brought in language and considered its interaction with mathematics from the 

perspective of genre. This chapter brings in images and considers their role alongside 

mathematics and language in construing the knowledge of physics. Whereas the previous 

chapters have focused on grammar and genre, this chapter will view the role of each resource 

in the discourse of physics through the register variable field (see Section 2.2 Chapter 2). By 

developing a field-based description, this chapter builds upon the rich descriptions of 

scientific language in SFL (e.g. Halliday and Martin 1993, Martin and Veel 1998) and offers 

a common perspective for comparing mathematics, language and image.
49

 By combining this 

with an analysis using LCT’s Semantics, this chapter allows us to understand the specific 

knowledge-building affordances of each resource and the organisation of knowledge in 

physics as a whole. 

Like any academic discipline, physics has its own distinctive ways of meaning. It puts its 

language, image and mathematics to work in specific ways to establish its own disciplinary 

discourse. This discourse manifests itself in texts that are ‘semiotic hybrids’ (Lemke 1998) 

constituted by a critical constellation of modes (Airey and Linder 2009), where each resource 

construes disciplinary knowledge in complementary ways. At the same time, different 

semiotic resources can organise similar disciplinary meanings. Although meanings are often 

resemiotised (Iedema 2003) across a text, a curriculum or a discipline through an array of 

                                                           
48

 Semantics is not the only way in to seeing the structuring of knowledge in physics. Dimensions of LCT such 

as Specialisation (Maton 2014) and Autonomy (Maton 2005) also provide useful perspectives on how physics is 

organised. However for reasons of space, they will not be dealt with in this thesis.  
49

 The chapter will not, however, offer detailed networks for field as it did in the previous chapters for genre and 

grammar. In keeping with the axial orientation of this thesis, the suggestions in this chapter are thus offered as 

steps toward full formalisation and a full justification for register as a stratum in multimodal semiotics. 



239 

 

different semiotic resources, the disciplinary meanings realised by each resource are still 

related. For example, an instance of technicality in physics such as Wien’s displacement law 

can be illustrated through language, mathematics or images. In language it can be described 

by stating that for blackbodies ‘as the temperature increases, the peak of the spectral 

emittance curve becomes higher and shifts to shorter wavelengths’ (Young and Freedman 

2012: 1311). Alternatively, in mathematics this law can be presented as: 

                 

Or through images it can be displayed as: 

 

Figure 5.1 Graph of Wien’s displacement law (Young and Freedman 2012: 1311) 

 

Or, as in one undergraduate university textbook, it can be elaborated by all three on a single 

page (Figure 5.2): 
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Figure 5.2 Wien’s displacement law (Young and Freedman 2012: 1311) 

 

Each of these semiotic resources present meanings associated with Wien’s displacement law 

and so they are part of the field of physics and resonate out to other meanings in the field. 

However each resource also presents these meanings in a way that is not precisely 

translatable across the resources. Understanding the similarity and difference of resources in 

the construal of physics knowledge is crucial to understanding the knowledge of physics 

itself, and so will be a constant theme throughout the chapter. We will see how texts in 

physics manage to build vast networks of interlocking meanings, and how these meanings 

contribute to physics’ knowledge structure. 

The discussion will begin with a brief review of field as viewed from language and an 

interpretation of mathematics in field-based terms. We will see that language and 

mathematics organise different dimensions of field, and thus complement each other in 

construing the knowledge of physics. Second, we will consider images, in particular diagrams 

and graphs, to show the significant meaning potential available in individual images, and the 

possibilities for types of meaning not readily available through language or mathematics. 

Throughout the chapter, we will interpret the field-based perspective of each resource from 

the perspective of Semantics in Legitimation Code Theory and thus build up a picture step-

by-step of the knowledge structure of physics. 
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5.1 The field of physics viewed from language and mathematics 

As discussed in Chapter 2 (Section 2.2) language arranges the knowledge of science into 

deep taxonomies and long sequences of activity (following Martin 1992a, Halliday and 

Martin 1993). Scientific taxonomies are either compositional, arranging technical terms into 

part-whole relations (such as the relation between an atom and its constituent nucleus and 

electrons), or classificational, arranging technical terms into type-subtype relations (such as 

the relation between atoms and its subtypes, hydrogen atom, helium atom etc.). 

Complementing these taxonomies are activity sequences that show progressions of events 

associated with a field. In science, these are typically sequences of implication where the 

unfolding of events is based on absolute contingency. That is, the progression of happenings 

is such that there is no possibility for counterexpectation. In language, these implication 

sequences are often realised by relations of causality, where each event necessarily causes or 

implicates the next. In certain situations, however, the sequences can be less deterministic. 

Other sequences, known as expectancy sequences, simply display expected or typical 

unfolding and thus open the possibility for unexpected events to occur. These expectancy 

sequences are often realised in language through temporal, rather than causal relations. 

From the perspective of language, therefore, the field of physics is organised through a large 

set of relatively delicate taxonomies of composition and classification, and a series of 

activity sequences involving entities that comprise these taxonomies. Every technical term 

gains a large swathe of meaning from its position in these intersecting dimensions, and thus 

displays relatively strong semantic density (Maton and Doran in press 2016a,b). Language is, 

however, only one component of the technical discourse of physics. As the previous 

chapters have shown, mathematics construes its meanings in considerably different ways to 

language through a distinct grammar and by realising distinct genres. Accordingly, in 

physics, the technical meanings arising from mathematics are organised along markedly 

different dimensions than those arising from language. In order to contrast mathematics with 

language in these terms (and with images further into the chapter), we must now briefly 

reinterpret mathematics in terms of field. 

The overarching grammatical organisation of mathematics raises the question of what type 

of field-relation it construes. The relations are not ones of composition: in     , m is not 

a part of p or v; nor are they classification: m is not a type of p or v. Nor do they organise 

any sort of expectancy sequence. Rather, the grammatical organisation appears to present a 
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large network of interdependency. When the value of one symbol changes, at least one of 

the others must necessarily also change. In this way, the relations are closer to those of 

implication sequences in language that indicate that if one event occurs another must 

necessarily also occur. However unlike the implication relations realised in language those 

of mathematics do not suggest any type of unidirectional sequence. Each element in the vast 

network of interdependency is contingent on every other. Moreover, the grammar of 

mathematics can specify large sets of these relations in one synchronic snapshot. This offers 

a subtle distinction to implication sequencing in language, and suggests the need for a small 

reinterpretation of implication for mathematics. Whereas language indicates implication 

sequences with a definite direction, in mathematics we can view the vast interconnected 

networks of meanings as implication complexes without any directionality. Seen in these 

terms, mathematics in physics works to construe large complexes of interdependency 

whereby each symbol is contingent on every other. 

This interpretation allows the realisational relationship between field and the grammar of 

mathematics to be traced. First, each field specifies its own particular implication complexes. 

These implication complexes are then realised by particular covariate relations in the 

grammar of mathematics (see Section 3.4.2.5 of Chapter 3), which remain stable across the 

field. In conjunction with the choice of Theme and Articulation, these covariate relations in 

turn coordinate the univariate organisation of symbols within both statements and 

expressions. The result is that only a small set of mathematical statements become 

acceptable within any particular field. In effect, these statements and the symbols that 

comprise them constitute the mathematical technicality of physics. 

If we look at this from the perspective genre, we see that the function of derivations is thus 

to build and make explicit field-specific implication complexes. However this raises the 

question of what quantifications do in terms of field. Where derivations build new relations 

between symbols, leading to new implication complexes, quantifications move from 

generalised statements to specific numerical measurements. In LCT terms, they work to 

strengthen the semantic gravity of physics by offering a pathway from abstracted theory to 

specific empirical instances. However this movement is not accounted for in the current 

conception of field. The relation between generalised theory and specific instance is not one 

of taxonomy, nor is it sequencing or complexing. Rather, it appears to be a distinct field-

specific dimension. Therefore as an exploratory step, I will propose a new scale that 

describes the movement between generalised relations and specific instances, termed 
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generality. Under this scale, pronumerical symbols, such as Ei, m, F etc. are at a higher 

generality than their numerical values, such as 5, -1.5 etc. 

Such a scale allows physics to talk both in general terms about the broader physical world, 

and in specific terms about a particular instances in the world. Although very preliminary in 

its formulation, it also offers an interpretation of the field-based meanings made by 

quantifications. Whereas derivations work to build implication complexes, quantifications 

work to shift physics from higher generality to lower generality (from a generalised 

description to a measurement of a specific instance). Notably, this occurs in only one 

direction. Quantifications only allow a movement from the general to the specific, not the 

other way around. In the data under study, there is no mathematical genre that offers a shift 

from number to generalised equations. Although at a higher level of mathematics, such a 

shift is possible through statistical and mathematical modelling, the algebra and calculus in 

physics schooling only affords a single direction. In Section 5.2.2, however, we will see that 

graphs do offer movements in the opposite direction. They complement quantifications by 

arranging empirical data into patterns that can be incorporated into generalised theory. 

Before moving on, we must note that the scale of generality in physics is not the same as the 

instantiation dimension in SFL. Instantiation is specifically concerned with the movement 

between generalised description and specific instance of semiosis. The difference between 

the two scales can be seen by the fact that any point in the scale of generality can occur in a 

text (the instance pole of instantiation). For example, a physics text can present a relation 

with higher generality involving only pronumerals, e.g.                , or it can 

present a relation with lower generality involving numbers,                         . 

If it were the case that generality and instantiation were the same thing, then only the low 

generality (i.e. numbers) could be instantiated in a text. 

Generality and instantiation are related, however. The scale of generality allows a field to 

describe the relation between system and instance in its own object of study. In physics, this 

object of study is the physical material world. Generality shows the relations between 

specific instances of the real world and the more general descriptions of physical systems. 

As another example from the separate field of meteorology, generality describes the relation 

between the generalised climate and instances of the weather. Similarly, if we view 

Systemic Functional Semiotics as a field in itself (along the lines of physics or meteorology), 

generality describes the relation between systems of semiosis and instances of text. That is, 



244 

 

it describes the scale of instantiation. The dimension of instantiation is thus a scale of 

generality focusing on semiosis (rather than the physical world or the climate).
50

 

Closing the discussion of mathematics, we see that for the field of physics it displays two 

distinctive features. It realises large complexes of implication relations developed through 

derivations, and shifts generality from highly general theory to specific empirical instances 

through quantifications. From the perspective of LCT, implication complexing affords 

condensation (strengthening semantic density) and decreasing generality affords gravitation 

(strengthening semantic gravity) in physics. As the previous chapter discussed, these two 

movements offer strong potential for developing the knowledge structure of physics. They 

allow physics to construe integrative propositions and engage with a large number of 

phenomena, while also creating a pathway for physics to connect its theory with its 

empirical object of study. 

As discussed earlier, a look at any physics text shows that mathematics works not just with 

language but also with image. So far we have reflected on field as it is developed by both 

language and mathematics, the next step is to consider the role of images. In the following 

section, we will see that images provide a powerful resource for displaying a very large 

number of technical meanings in a single snapshot. In addition, they bring to the fore their 

own field specific meanings; meanings that are not readily apparent in mathematics and 

language. By drawing on image in conjunction with mathematics and language, physics 

presents a multifaceted field that utilises the affordances of multiple semiotic resources to 

construe the various dimensions of its hierarchical knowledge structure. 

  

5.2 Images and field 

Aside from language, the only resource to rival mathematics for its pervasiveness in physics 

is images. Images are used earlier than mathematics in primary schooling, are prevalent 

throughout high school and university, and form a critical resource in research. They are 

used to explain processes, report descriptive features and present raw data. They display a 

multifaceted functionality for organising the technical knowledge of physics and they 
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 Generality is also distinct from SFL’s variable of presence (Martin and Matruglio 2013, Martin in press 2016). 

Presence is a cover term for a range of resources across metafunctions that contribute to the contextual 

dependency of a text. If mathematics is taken into account, it is likely that the scale of generality would be one 

factor in the iconicity dimension of presence. However as Martin makes clear, there is a very large range of 

other resources at play in presence at any one time. 
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complement the meanings made in language and mathematics. Thus an account of the 

discourse and knowledge of physics that avoids images would be significantly lacking. 

Much of the power of images comes through the amount of meaning that can be displayed in 

a single snapshot. As we will see, physics images can present large taxonomies, long 

sequences of activity, extensive arrays of data and a broad range of generality all in a single 

image. Like both mathematics and language, images contribute to the hierarchical 

knowledge structure of physics as they can display a large degree of meaning and can 

develop generalised models from empirical data. This means they can scaffold the strong 

semantic density apparent in physics and at the same time invert the shift in semantic gravity 

afforded by mathematical quantifications. This will be developed in two main sections 

below. First we will consider diagrams (broadly interpreted), to highlight the possibility of 

multiple field-based structures in a single image. This will illustrate images’ strong potential 

for semantic density, and also offer an insight into their utility for presenting overviews of 

these meanings. Second, we will focus on graphs (again interpreted broadly) to show how 

information can be organised into multiple arrays in ways not readily instantiated in 

language or mathematics.
51

 These arrays of information allow for the generalisation and 

abstraction of patterns, and indicate shifts in semantic gravity in the reverse direction to 

those seen in mathematics. In conjunction with mathematics and language, we will see that 

images play a vital role in developing meaning and linking the theory of physics to the 

empirical world. 

 

5.2.1 Diagrams in physics 

Diagrams are regularly used in physics to illustrate, exemplify, explain, explore and present 

a large range of technical meanings. In many textbooks, it is unusual for a page to go by 

without there being at least one diagram complementing the linguistic and mathematical text. 

Like language, diagrams present a range of field-specific meanings including activity 

sequencing and taxonomy. In fact, many of these dimensions appear more easily articulated 

through image; it is no accident, for example, that the standard presentation of taxonomies in 

SFL involves images. Kress and van Leeuwen’s grammar of images (1990/1996/2006) is 

                                                           
51

 We will not consider whether a stratum of genre can be justified for images in this thesis, however as we will 

see, there does appear to be a division of labour in terms of field between different ‘types’ of images. Such a 

coordination of field and mode suggests that a stratum of genre may be a productive category for images. This is 

briefly discussed in Chapter 6. 
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particularly useful when considering field (introduced in Section 2.4.1 of Chapter 2). Many 

of the types of representational images (2006: 59) within their ideational metafunction 

resonate strongly with field as it has been conceived in relation to language. Narrative 

images for example tend to realise activities in field through Vectors of motion, while many 

conceptual images that show CarrierPossessive-Attribute or SuperordinateSubordinate 

structures articulate taxonomies. Indeed much of the grammar of images appears to have 

been developed with field-based meanings in mind. As we will see, physics regularly uses 

many such images to convey its technical meanings. 

In their grammar, Kress and van Leeuwen are unclear as to whether an image can contain 

multiple structures of the same status. They do indicate that a single structure defining the 

image as a whole can recur in parts of that structure, but it is not clear whether an image can 

display multiple structures at the highest level simultaneously. For the purposes of this 

chapter, I will argue for treating physics diagrams as potentially containing many structures 

of the same status. This means that various elements in images can play different structural 

roles, and therefore realise multiple field-based meanings. Indeed the regular use of multiple 

structures in a single image is one of the most powerful features of images for construing the 

technical meanings of physics. However before introducing these complex images we will 

begin by exploring relatively simple images that realise a single dimension of field. 

As mentioned above, physics regularly utilises narrative images and these images construe 

activity. Narrative images include events and their participants, and minimally involve a 

Vector. This Vector displays some sort of motion or direction and is often accompanied by a 

number of participants. Figure 5.3 (a), from a senior high school textbook, exemplifies this 

pattern. 

 

Figure 5.3 (a) Image with a single activity (Warren 2000: 141) 
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This image illustrates a ball rolling down an inclined plane. The arrow above the ball is the 

Vector that makes explicit the direction of motion, while the ball is the Actor (the participant 

that moves). In Kress and van Leeuwen’s terms, this image is a non-transactional image as it 

involves a moving Actor, but without any definite end-point or Goal. To analyse this image, 

we will highlight different elements according to their structural role. In the analysis below, 

the Vector is highlighted in yellow and the Actor is in red.
52

 

 

Figure 5.3 (b) Analysed image with a single activity 

(Vector in yellow, Actor in red) 

 (Warren 2000: 141) 

 

This image represents a relatively simple image with only a single structure,
53

 and realises a 

single activity at the level of field.  In contrast, it is common for images to display multiple 

Vectors in a sequence and therefore realise an activity sequence. Figure 5.4 (a), from a 

junior high school textbook, for example, illustrates this (with the analysis in 5.4 (b) to its 

right). 

 

                                                           
52

 The image analysis for this thesis was originally done using Multimodal Analysis Image (O’Halloran 2012). 
53

 We will not consider the possible circumstantial meanings of the inclined plane (the line that the ball is rolling 

down). Throughout the analyses, many images will display meanings that are somewhat tangential to the field-

based meanings that we wish to consider. As such, these will be left out of the analysis. 
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(a)   (b)  

Figure 5.4 (a) Activity sequence in an image (Mau 1999: 8) 

(b) Analysis showing Actors (red), Vectors (yellow) and Goal (green) 

In interpreting this image, the ball, functioning as an Actor, first moves toward the bat (the 

Goal, highlighted green). Its movement is indicated by a yellow arrow Vector. Once it has 

hit the bat, the ball changes direction and moves downwards. The dotted circle indicates the 

Actor from which the second Vector emanates. Interpreted along these lines, the image 

shows an activity sequence where one event, the ball moving to the left, is followed by 

another event, the ball moving down. 

Activity sequences such as this can become quite complex, with long strings of Vectors 

emanating from a single Actor. This is demonstrated by Figure 5.5 (a) that illustrates a 

nuclear chain reaction (from a senior high school textbook). To analyse this image, it is 

useful to make an addition to Kress and van Leewuen’s grammar. This addition is to 

distinguish the participant from which the Vector emanates, but which itself does not move, 

from the participant that is actually moving. In Kress and van Leeuwen’s grammar, both of 

these are considered the Actor; however for the purposes of the discussion in this chapter, 

the function of Actor will be reserved for the participant that is moving, while the participant 

from which the Vector emanates (but which does not itself move), will be called the Source 

(and highlighted with pink). 
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Figure 5.5 (a) Long activity sequence (Marsden 2003: 15) 

 

Figure 5.5 (b) Analysis of long activity sequence  

(Actor in red, Vector in yellow, Goal in green, Source in pink) 

(Marsden 2003: 15) 

 

In this image, a longer activity sequence is illustrated. It begins with the Actor labelled n 

(representing a neutron), moving toward its Goal (in green), a uranium atom (labelled U), 

with the direction of motion indicated by an arrow Vector (in yellow). In addition to being 

the Goal of the initial Vector, this element also functions as the Source (shown by 

overlapping pink on the Goal’s green) from which five other Vectors emanate in different 

directions. Each of these Vectors in turn represent the motions of other particles, shown as 

Actors in red. One of these particles (also a neutron, but not labelled), moves toward the 

second uranium atom as its Goal, from which in turn five more Vectors emanate. This 

process is repeated once more, resulting in nineteen Vectors and nineteen participants being 

displayed, with three of the participants performing two functions (Source and Goal). In a 

single snapshot, this image realises a very large sequence of activity. We will see, however, 

that this is by no means the upper limit in the degree of meaning that can be displayed in an 

image. 

Before moving on to other structures, it is important to note that multiple activities may be 

represented in an image without any explicit sequencing between them. This is illustrated in 
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Figure 5.6 from a senior high school textbook. This image shows a ‘free body diagram’ of 

the forces impacting a car that is coasting without any pressure on the accelerator. For this 

image, only the Vectors representing forces have been highlighted. 

 

 

Figure 5.6 (a) Free body diagram (Wiecek et al. 2005: 216) 

 

Figure 5.6 (b) Vectors (yellow) in free body diagram (Wiecek et al. 2005: 216) 

This image shows seven Vectors, however they are not sequenced in relation one another. 

Each Vector construes its own relation to the car, without any indication of a sequence. 

Although in the field of physics the NET FORCE Vector on the right of the image is the sum 

total of every other force shown, this is not made explicit in the image. In mathematics, the 

relation between the net force and the other forces would be shown by an equation such as 

     ∑ , which is read as the net force is the sum of all component forces. This 

implication relation is not, however, given in the image. This highlights an important feature 

of images. Images do not appear to have the same capacity as mathematics to construe 

nuanced implication complexes. They can display multiple activities that are related 

implicationally, but they do not grammaticalise the precise nature of these relations. In 
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addition, images do not appear to make a clear distinction between implication and 

expectancy sequencing. They can show that one Vector follows another; but without 

labelling, there is no way to distinguish whether sequences of Vectors are related temporally 

or causally. Nonetheless despite these restrictions, images can display several activity 

sequences in a single eyeful. 

In addition to realising activity, images display a strong capacity for realising delicate 

taxonomies of both classification and composition. Figure 5.7 presents a relatively simple 

compositional outline of an atomic model, known as the Rutherford atom. Grammatically, 

this is an analytical image, constituted by a Carrier (the entire atom, shown in blue) and five 

Possessive Attributes (shown in purple) (Kress and van Leeuwen 2006: 87). In terms of field, 

it realises a two-level compositional taxonomy, with the highest level (the whole) being the 

atom itself, and its constituent being the electrons and the nucleus. 

 

 

Figure 5.7 (a) The Rutherford atom (Marsden 2003: 2) 
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Figure 5.7 (b) Compositional analysis of the Rutherford atom  

(Carrier in blue, Possessive Attribute in purple) 

(Marsden 2003: 2) 

 

In contrast, Figure 5.8 that we saw in Chapter 2 presents a simple classification of types of 

matter, with the Superordinate shown in brown and the Subordinates shown in orange. 

 

 

Figure 5.8 (a) Types of matter (Warren 2000: 155) 
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Figure 5.8 (b) Classification analysis of types of matter  

(Superordinate in brown, Subordinates in orange) 

(Warren 2000: 155) 

 

Each of these images realises a single dimension of field, either activity or taxonomy. The 

real power of images, however, comes through their ability to present multiple structures 

that realise multiple types of field-based meanings. This greatly expands the meaning 

potential of images and often results in elements performing multiple functions. Through 

this multifunctionality, different field structures can be related, allowing the interlocking 

meanings of physics to be displayed in a single snapshot. To illustrate this, we will focus on 

Figure 5.9, an image from a university textbook. This image outlines two experimental 

apparatuses designed to view patterns of light emitted from different sources (known as the 

emission line spectrum). 



254 

 

 

Figure 5.9 Experimental apparatus diagram (Young and Freedman 2012: 1292) 

 

This image illustrates two examples of the same experimental set up – one on the left and 

one on the right – that differ only in their source light (the light bulb with heated filament on 

the left and the lamp with heated gas on the right). Due to their set up, and the similarity in 

their overall purpose, these two apparatuses are of the same type; they both illustrate sub-

types of an experimental set up known as a single slit experiment. At first glance, then, the 

grammatical structure of the image displays a covert classificational taxonomy involving 

two Subordinates (shown in orange in Figure 5.10), but without explicitly showing the 

Superordinate (Kress and van Leeuwen 2006: 87). 
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Figure 5.10 Classification analysis of experimental apparatus diagram 

(Subordinate in orange) 

 (Young and Freedman 2012: 1292) 

 

In terms of field, this image realises a classification taxonomy whereby each apparatus is a 

subtype of the single slit experimental apparatus. If we look further, however, it is clear 

these classification relations are by no means the only structures in the image. The image 

can also be read as an analytical image, displaying part-whole relations between each 

apparatus and their components. Figure 5.11 highlights these composition relations: light 

blue indicates the Carriers (the wholes) and purple indicates the Possessive Attributes (the 

parts). 
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Figure 5.11 Composition analysis of experimental apparatus diagram 

(Carriers in blue, Possessive Attributes in purple) 

(Young and Freedman 2012: 1292) 

This analysis shows that each apparatus contains five pieces of equipment: a lens, slit, 

diffraction grating, screen and light source. This similarity in composition justifies our 

previous analysis of the two apparatuses being of the same general type; indeed four of their 

components (the lens, slit, diffraction grating and screen) are exactly the same. The 

difference between the two set-ups comes from their choice of light source. The apparatus 

on the left utilises a light bulb with a heated filament, while the apparatus on the right uses a 

lamp with heated gas. This difference in a single component distinguishes the two 

apparatuses as different subtypes. This image therefore relates two interlocking taxonomies 

in one go; their composition taxonomies justify the classification taxonomy, and the 

classification taxonomy anticipates the composition taxonomy. It also shows that the 

apparatuses themselves function in both of these taxonomies as co-parts in a classification 

taxonomy and as wholes in two composition taxonomies. 

As each apparatus is a different sub-type with a slightly different composition, the results of 

each experiment are different. This is encoded in the image through a narrative structure. 

This structure depicts the path of light from the source through each piece of equipment until 

it hits the screen. Figure 5.12 shows this narrative analysis (Source in pink, Vector in yellow, 

Goal in green and Resultative Attribute (see below) in dark blue). 
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Figure 5.12 Narrative analysis of experimental apparatus diagram 

(Sources in pink, Vectors in yellow, Goals in green, Resultative Attributes in blue) 

(Young and Freedman 2012: 1292) 

 

The analysis indicates that the Vector emanating from the light Source moves toward the 

lense, functioning as a Goal. The lenses also function as Sources from which another Vector 

of light emanates. This pattern continues for each piece of equipment until the final Vector 

reaches the screen, i.e. the final Goal. This structure thus involves four Vectors for each 

apparatus (justified by the fact that after each piece of equipment, the shape and size of the 

light changes, indicating distinct Vectors, rather than one continuous Vector).  

In addition, we can note the difference in the patterns on each screen, labelled as: (a) 

Continuous spectrum: light of all wavelengths is present and (b) Line spectrum: only certain 

discrete wavelengths are present. These patterns are a result of the different narrative 

structures, in particular the different elements realising the original Source (the light bulb 

with heated filament and the lamp with heated gas). The differences in these patterns are 

important as they effectively present the results of the experiment. In lieu of an appropriate 

function in Kress and van Leeuwen’s grammar that relates this pattern to the narrative 

analysis, we will consider these patterns to function as Resultative Attributes (analogous to 
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Resultative Attributes of English, such as straight in he bent that rod straight; Halliday and 

Matthiessen 2014: 327, Martin et al. 2010: 116). The Resultative Attributes are shown in 

dark blue above. 

The image thus realises two activity sequences – one for each apparatus – in addition to the 

classification and composition taxonomies shown previously. These activity sequences 

involve light moving from each apparatus’ light source to the lens, and then from the light 

source to the slit, and then from the slit to the diffraction grating, and finally from the 

diffraction grating to the screen, resulting in their particular light patterns (their spectra). The 

differences in each activity sequence (i.e. the different patterns on the screen) arise from the 

different apparatus’ set ups (i.e. the particular sub-type of the apparatus and its 

corresponding composition). The particular activity sequences that occur are intertwined 

with the particular classification and composition taxonomies. Moreover they are all 

displayed in one image. 

To give an idea of the amount of meaning presented in the image (not including labels), each 

analysis is overlayed in Figure 5.13. 

 

Figure 5.13 Full analysis of experimental apparatus diagram 

(Sources in pink, Vectors in yellow, Goals in green, Resultative Attributes in dark blue, 

Subordinates in orange, Carriers in light blue, Possessive Attributes in purple) 

  (Young and Freedman 2012: 1292) 
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When analysed for each function impacting on field, the amount of meaning given in a 

single image becomes clear (and the analysis becomes hard to view in a single take). By 

realising multiple activity sequences, compositional taxonomies and a classification 

taxonomy all from the same field, each dimension is explicitly related.  

If we take a further step to include the dozen labels in the image, the number of meanings 

displayed increases further. Each label indicates a synonymous relation between the 

linguistic label and the imagic element being labelled. The effect of this is twofold. First, 

elements that share the same label are seen to be the same. For example, the two pieces of 

equipment labelled slit are specified as being the same type of element. This further 

confirms the compositional analysis given previously, and thus also reinforces the unity 

between the apparatuses in terms of their place in the classification taxonomy. Second, the 

labels allow language and image to share meanings. The field-specific meanings associated 

with the linguistic technicality are linked with those associated with the elements in the 

image. For example, the distinction between the continuous spectrum and line spectrum as 

two sub-types in a classification taxonomy of spectra are related to the patterns displayed on 

each apparatuses’ screen. As we have discussed, these patterns are determined by the 

particular activity sequence in each apparatus. This activity sequence is in turn determined 

by the compositional taxonomy of each apparatus, which is similarly determined by the 

different types of apparatus in the classificational taxonomy. Therefore from this single 

image, we can form an unbroken chain of relations between the separate classification 

taxonomy of spectra and that of types of apparatus, as well as the different activity 

sequences and composition taxonomies. A single image makes manifest the interlocking 

lattice of field-specific meaning. 

This image is by no means unusual. It is in fact a relatively unremarkable image that would 

be easily understood by someone sufficiently trained in physics. In the following section we 

will consider an image that shows all of these meanings plus those realised by graphs. Such 

is the pervasiveness of images like this – especially at the higher levels of physics – that a 

presentation of this amount of meaning is a common occurrence. 

This potential to realise field-based meaning has significant implications for the semantic 

density of physics discourse. By explicitly relating multiple field structures of activity and 

taxonomy, images can indicate tremendously strong semantic density in a single ‘eyeful’. 
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This allows the field of physics to be extended (if these relations had not previously been 

made explicit), and also offers an efficient method of displaying this meaning. Through 

images, relatively large components of the field can be illustrated in a small stretch of 

imagic discourse. By sharing meaning with mathematics and language, each resource can 

utilise their own affordances to build the expanding network of meaning that constitutes 

hierarchical knowledge structure of physics. 

Activity and taxonomy are not the only dimensions of field images may realise, however. In 

the following section, we will see that graphs bring forward further meaning potential not 

readily apparent in language, mathematics nor any of the images we have seen so far. 

 

5.2.2 Graphs in physics 

Graphs are regularly employed in physics to record measurements, illustrate patterns and 

highlight salient interrelations between technical meanings in physics. They allow a broad 

range of empirical observations to be related along multiple dimensions and establish a 

means for these relations to be incorporated into theory. Graphs first become prominent in 

junior high school before becoming regular features in senior high school and undergraduate 

university, and ubiquitous in research publications. Like diagrams, they display a rich and 

multifaceted functionality for organising the technical knowledge of physics. However the 

meanings they organise are of a different order to the taxonomy and activity we saw in the 

previous section. By virtue of their organisation, graphs expand the meaning potential of 

physics by realising new and distinct dimensions of field. This section will be concerned 

with highlighting these dimensions and characterising their specific roles in constructing the 

knowledge of physics. First, it will show that graphs order technical meanings along axes in 

order to utilise images’ capacity for topological representation (Lemke 1998). This 

establishes arrays of meaning with the potential for a continuous gradation of empirical 

observations in terms of degree, quantity or amount. Second, it will highlight that through 

these arrays graphs enable patterns to be abstracted and generalised from empirical 

measurements. This reverses the direction of generality shown by mathematical 

quantifications and thus allows the empirical object of study to speak back to the theory of 

physics. Finally, it will show that like the diagrams discussed in the previous section, graphs 

can be added to other images to enrich the relations between field-specific activities, 

taxonomies, arrays and generality. From this we will see that the meaning potential of 
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graphs complements that of mathematics, language and diagrams to extend the range of 

resources needed to construe physics’ hierarchical knowledge structure. 

Graphs exhibit a significant degree of variability. They can show single or multiple 

dimensions, they can arrange discrete points or continuous lines and they can specify precise 

measurements or relative degrees. Minimally, a graph is realised by a single axis that allows 

data points to be ordered along a single dimension. Figure 5.14 from a university textbook 

exemplifies a one dimensional graph such as this. This graph presents an array of light 

wavelengths known as the Balmer series (that are emitted from a transitioning electron in a 

hydrogen atom). It arranges a set of discrete points along the horizontal axis, with each 

point’s relative position indicating its wavelength. 

 

 

Figure 5.14 One dimensional graph of the Balmer series 

(Young and Freedman 2012: 1304) 

Looking from field, the labels H, H, H etc. suggest that each point on the graph is related 

through classification. They are each subtypes of H-lines (standing for hydrogen), with the 

far right being the H- line, the next from the right being the H- line, the next being the H-

 line and so on. In addition, they are all labelled numerically, as 656.3nm (nanometres), 

486.1 nm etc. This suggests that these points sit at a relatively low level of generality, i.e. 

they represent empirical instances rather than generalised patterns. However these field-

specific meanings of classification and generality are indicated by the labels, not by the 

layout of the graph itself. In fact its spatial layout establishes a different type of relation. 

This relation contrasts and orders the points in terms of their specific wavelength. Those to 

the right are construed as having a longer wavelength (also indicated by the larger number) 

than those to the left. Moreover, their relative distance apart specifies their relative 

difference in wavelength. For example, the larger gap between the H line (in red on the far 

right) and the H line (one to the left in blue) indicates a significantly larger difference in 

wavelength than that shown by the smaller gap between H and H to its left. Although each 
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point is a co-hyponym (co-type) in a classification taxonomy of emission lines and also 

realises a specific level of generality, this spatial arrangement realises a further relation. In 

terms of field, this relation can be interpreted as a field-specific array. Arrays organise 

technical meanings in a field along a particular dimension. In this case, the emission lines 

are being ordered along an array of wavelength. More generally, graphs primarily realise 

arrays through the spatial ordering of points or lines along an axis. Due to their facility for 

displaying topological meaning (Lemke 1998) images can in principle construe arrays with 

infinitely small degrees of gradation. This allows an indefinite number of terms to be related 

and, in the case of multidimensional graphs, offers the possibility of both continuous and 

discrete variation. 

One dimensional graphs such as Figure 5.14 are relatively infrequent in the discourse of 

physics. More commonly, graphs are presented with two intersecting dimensions. These 

graphs are known as Cartesian planes. Figure 5.15 illustrates a two dimensional Cartesian 

plane used in an undergraduate university lecture (but originally sourced from an art project 

focusing on global warming, Rohdes 2007). The graph presents the range of wavelengths of 

light emitted by the Sun and arriving at the Earth. It arranges two sets of points, shown by 

the red and yellow bars. The yellow bars indicate the spectral irradiance emitted by the sun 

(crudely, the amount of sunlight) that hits the top of the atmosphere, while the red bars 

indicate the spectral irradiance that travels through the atmosphere and hits sea level. 
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Figure 5.15 Solar radiation spectrum (Rohde 2007) 

This graph coordinates two axes, the vertical y-axis, labelled Spectral Irradiance (W/m
2
/nm) 

and the horizontal x-axis labelled Wavelength (nm). By presenting two dimensions, each 

point is characterised by two variables: its spectral irradiance measured in W/m
2
/nm (read as 

Watts per square metre per nanometre) and its wavelength in nm (nanometres, a billionth of 

a metre). For example, the red bar (labelled radiation at sea level) at a 500nm wavelength 

has a spectral irradiance of ~1.4 W/m
2
/nm. As can be seen, each point in the graph shown by 

the red or yellow bars is miniscule. This means the arrays present very small gradations in 

relation to each other and allow a great deal of precision to be encapsulated in the field. In 

this particular field, this graph establishes an interrelation between the two arrays of spectral 

irradiance and wavelength. Thus one of the realisations of the field of the solar radiation 

spectrum is that each value of wavelength will have the specific value of spectral irradiance 

specified by this graph.  

The arrangement of points into arrays directs us to the second feature of graphs that is 

significant for knowledge in physics: its potential for increasing generality. Both the yellow 

and red bars present empirical observations, i.e. relatively specific measurements of spectral 
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irradiance for each wavelength based on tables published by the American Society for 

Testing and Materials (2012). In terms of field, they represent relatively low generality. 

However by arranging these measurements along an array, the graph abstracts a general 

pattern of change. Both spectral irradiances peak around 500nm wavelength, drop off 

quickly at lower wavelengths (on the left), but more slowly at higher wavelengths (on the 

right). The graph presents this general pattern in the form of a line, shown in grey and 

labelled 5250° C Blackbody Spectrum. This line represents the spectral irradiance vs 

wavelength for a theoretical construct known as a black-body. By fitting this line to the 

empirical measurements, the graph portrays the solar spectrum as approximating that of a 

black-body (specifically, a black-body at a temperature of 5250° C). It relates the empirical 

and low generality measurements to the theoretical and higher generality black-body 

spectrum. The graph thus offers the potential to abstract generalised theory from physical 

observations, i.e. to move from low to high generality. 

In addition, by overlaying the set of red points on the yellow points, the graph highlights a 

second dimension of generalisation. As the graph states, the yellow bars represent the 

sunlight that hits the top of the atmosphere. On the other hand, the red bars represent the 

sunlight that makes it through the atmosphere to sea level. The difference in height (spectral 

irradiance) between the yellow and red bars signifies the amount of light that is absorbed by 

the atmosphere and thus does not reach sea level. Whereas the array of light at the top of the 

atmosphere (yellow) closely resembles the idealised line of the black body, the light at sea 

level (red) is much less smooth. The red displays gaps and bumps where the yellow doesn’t. 

These gaps indicate wavelengths where the absorption is highest, i.e. where the atmosphere 

stops the most light. Importantly, these gaps are empirical differences born of observation. 

By layering the red and yellow measurements on top of each other, the graph compares the 

two by labelling the gaps absorption bands. Each absorption band is then given a specific 

classification (H2O, CO2, O2 and O3) that signifies the molecule that does the absorbing. The 

graph therefore groups empirical measurements and generalises them into a classification 

taxonomy. In doing so, it again construes new higher generality field specific relations from 

lower generality observations. 

As this figure shows, graphs present opportunities for heightening generality. They allow 

arrays of specific measurements to be generalised into patterns, which then opens the path 

for these patterns to be abstracted into other field relations (such as classification). However, 

this is not to say that graphs only allow a shift from low to high generality. The nature of 
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images is such that this reading path can be reversed; we could have begun at the 

generalised black-body line and moved to the empirical observations. But it does illustrate 

that graphs offer opportunities to shift from lower to higher generality. This movement 

contrasts with that afforded by mathematical quantifications. Mathematics organises 

movements from generalised theory in the form of implication complexes to specific 

measurements in the form of numbers (from high generality to low generality). Graphs, on 

the other hand, offer the possibility of movements from specific measurements to 

generalised theory (from low generality to high generality). In LCT Semantics terms, 

physics thus may both strengthen and weaken semantic gravity. Quantifications present 

movements from weaker to stronger semantic gravity, while graphs present movements 

from stronger to weaker semantic gravity. Put another way, quantifications offer a tool for 

gravitation, graphs for levitation (following the terminology used in Maton 2014). The two 

resources are thus complementary for physics’ knowledge structure. Together, they provide 

the means for the theory of physics to reach toward its empirical object of study, and for the 

empirical to speak back to the theory. 

In terms of semantic density, the arrays in graphs allow an enormous set of measurements 

with indefinitely small gradations to be related along a single dimension. This supports 

relatively strong semantic density and bolsters the range of empirical phenomena that can be 

encompassed in a single image. Moreover, semantic density can be strengthened by the 

abstraction of field-structures such as taxonomies, as greater constellations of meaning are 

assembled. The fact that, like diagrams, graphs can be combined with other structures in a 

single image further expands the strongest potential for semantic density. Series of activities, 

taxonomies, arrays and levels of generality can be presented in a single image, offering great 

power for integrating physics’ knowledge structure. To illustrate this, we will consider in 

detail at Figure 5.16, an ‘energy level diagram’ from a university physics textbook. This 

image illustrates a set of possible energy transitions available to an electron in a hydrogen 

atom. 
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Figure 5.16 Energy level diagram for a hydrogen atom  

(Young and Freedman 2012: 1303) 

 

First, this figure presents a one dimensional graph. It arranges its points, shown by 

horizontal lines, along the vertical axis and measures them in terms of their energy (e.g. 

        ,          ). It thus construes an array of energy levels in the hydrogen atom. 

Figure 5.17 below highlights this by displaying the vertical axis with a red line and 

highlighting each point light blue. 
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Figure 5.17 Graph of energy levels in a hydrogen atom 

(Axis in red, Points in blue) 

(Young and Freedman 2012: 1303) 

 

In addition, the  presents a narrative image with the series of arrows indicating a number of 

Vectors. Each Vector arrow (highlighted yellow in  5.18 below) emanates from a point on 

the graph. These points thus function as Sources (highlighted in pink). Additionally, each 

Vector moves toward another point on the graph, which function as Goals (highlighted in 

green). As all points except two (the top and the bottom) have both a Vector emanating from 

it and a Vector moving toward it, these function as both a Goal and a Source.  5.18 

illustrates this reading below. 
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 5.18 Narrative analysis of an energy level diagram of the hydrogen atom  

(Vectors in yellow, Sources in pink, Goals in green) 

(Young and Freedman 2012: 1303) 

The twenty Vectors and their respective Goals and Sources in this image realise a large 

number of activities. Each activity corresponds to a transition from a particular energy level 

to another energy level. As there are twenty Vectors, but only seven points from which a 

Vector can emanate or transition toward, many activities share the same beginning or end 

point. This forms the basis for the image to present a classification taxonomy. Each Vector 

is grouped according to its end point (its Goal,    ,     etc.) and is labelled as a type of 

series. Those moving toward     are labelled the Lyman series, those moving toward 

    are labelled the Balmer series, those moving toward     are labelled the Paschen 

series and so on. The end result is a classification taxonomy with three levels of delicacy. 

The most general superordinate arises from the fact that each arrow is structured the same 

way and is labelled as part of a series. It suggests that at some level all of the transitions 
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(arrows) are of the same type (they are electron transition lines). At the second level, the 

image presents five sub-types of transition lines according to their end-point, each of which 

are labelled. The five subtypes of transition lines are the Lyman transition lines, the Balmer 

transition lines, the Paschen transition lines, the Brackett transition lines and the Pfund 

transition lines. Finally the third level within each subtype of transition line includes the 

specific transitions distinguished by their starting point. The Lyman transition series 

includes six lines, the Balmer includes five, the Paschen includes four and so on. In all, the 

image realises a three level classification taxonomy that includes twenty-six nodes. This 

classification analysis is shown in  5.19. In the interest of readability, only the second level 

groups of transition lines are highlighted. 

 

 5.19 Classification analysis of an energy level diagram of the hydrogen atom 

(Superordinate in brown) 

(Young and Freedman 2012: 1303) 
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This three-level, twenty-six node classification taxonomy supplements the twenty activities 

being realised, the seven points on the graph and the nineteen labels. The image thus 

encodes a large degree of meaning for what may, at first glance, look like a relatively simple 

diagram. The full analysis, highlighted to show classification, activity and graphs, and with 

each label circled (showing synonymy with language and mathematical symbolism) is given 

by  5.20. The highlighting helps to make explicit the semantic density of the image. 

 

 5.20 Full analysis of an energy level diagram of the hydrogen atom 

(Superordinates in brown, Vectors in yellow, Sources in pink, Goals in green,  

Axis in red, Points in blue, Labels circled) 

(Young and Freedman 2012: 1303) 
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Once each dimension of meaning is highlighted, the entire image is coloured or circled. 

Each highlight realises a distinct structure in field. This is relatively typical of many images 

in physics. They provide a means to synoptically integrate meaning, with little extra 

information given that is superfluous to the technical meaning of the field. Just like 

mathematics is geared toward construing ideational meanings, so are images in physics. The 

full analysis also highlights the number of relations presented in the image by offering a path 

from the array to the activities to the classification taxonomy. The points on the array 

function as the beginning and end points for activities involving electrons transitions 

(though the electrons aren’t shown).
54

 Through the similarity in end-points, the image 

organises the arrows into a classification taxonomy. The different types within this 

taxonomy are then labelled, allowing these field-meanings to be discussed in language. By 

presenting an array, a taxonomy and a series of activities, this image realises much of the 

field-specific meaning associated with hydrogen atom electron transitions in a single 

snapshot.  

Images clearly hold great power for organising the knowledge of physics. In LCT terms, this 

offers physics strong semantic density by allowing a significant spectrum of phenomena to 

be encapsulated and vast swathes of technical meaning to be combined. Further, they offer a 

large range of semantic gravity. They can present empirical measurements or generalised 

theory, and illustrate a pathway between both. In this way, they complement the gravitation 

of mathematical quantifications by affording a tool for levitation (weakening of semantic 

gravity). Finally, they can be labelled by both mathematics and language, and thus allow the 

meanings developed in one resource to be expanded in another. In sum, images allow 

meaning to be related and proliferated while maintaining contact with the empirical world. 

 

5.3 Field and the knowledge structure of physics 

Mathematics, images and language all display a powerful utility for physics. They each 

utilise their own ways of meaning, their own types of texts and their own functional 

organisation to construe physics’ intricate and multifaceted knowledge. This chapter has 

considered images and mathematics from the perspective of field in order to develop a 

                                                           
54

 These transitions are not movements in space – the electron does not go up or down within the atom – rather 

they represent changes in energy of the electron. This meaning can only be garnered through the relation 

between the graphical array (showing energy) and the narrative-based activities. 
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means of comparison with each other and with language. Viewing each resource from the 

same vantage point allows a consistent basis for understanding the disciplinary affordances 

(Fredlund et al. 2012) images, language and mathematics exhibit for physics. The chapter 

has shown that while each resource demonstrates its own functionality, many of the same 

dimensions of field can be realised across language, mathematics and image. For example, 

language and image can both realise taxonomy, language and mathematics can both construe 

types of implication and mathematics and image can both organise differing levels of 

generality. This shared possibility for meaning has implications for the broader stratal 

framework proposed in this thesis as it suggests a common stratum of register realised by 

language, mathematics and image may be productive for understanding their 

complementarity. Further to this, by examining each resource in relation to field of physics, 

we can approach the knowledge structure of physics in a more holistic way. We can see its 

potential for shifting semantic gravity and developing semantic density, and we can 

recognise the influence this has on the breadth of empirical phenomena integrated in the 

discipline. The final chapter will be focused on these two themes of disciplinary affordance 

and knowledge structure. First, it will overview the disciplinary affordances of language, 

image and mathematics in relation to the field of physics. Second, it will consolidate the 

work presented in this thesis to characterise role of each resource for the knowledge 

structure of physics as a whole. And finally, it will look to the broader implications of this 

thesis for our understanding of knowledge and semiosis. 
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CHAPTER 6 

Multisemiosis and the Knowledge Structure of Physics 

 

Physics organises its knowledge structure through language, mathematics and image. This 

thesis has explored the meaning-making potential of these resources and the role they play in 

construing this knowledge. As part of this exploration, it has also developed a detailed 

description of mathematics that brings out its specific functionality, and has illustrated 

Systemic Functional descriptive principles that allow theoretical categories to be derived and 

tested. 

This final chapter consolidates the models developed in this thesis and considers some of the 

broader ramifications of this research. Section 6.1 focuses on multisemiosis in relation to the 

knowledge of physics. First, it brings together the descriptions of mathematics, language and 

image to examine the disciplinary affordances (Fredlund et al. 2012) for each resource in 

organising the knowledge of physics. Second, it considers physics as a whole and views its 

knowledge as a unified structure.  Following this, Section 6.2 considers the broader 

descriptive issues this thesis has raised. In particular, it considers claims of the pervasiveness 

of metafunctionality across semiosis and the role of the connotative semiotics of genre and 

register in unifying multisemiotic descriptions. Finally, Section 6.3 looks ahead to the 

research avenues highlighted by this thesis in relation to developing a broader semiotic 

typology and a more comprehensive understanding of physics. 

 

6.1 Knowledge and multisemiosis in physics 

As the previous chapters have shown, physics displays the features needed for a hierarchical 

knowledge structure. It can both develop abstract theory and explicitly relate this theory to 

the empirical world. In construing this knowledge structure, mathematics, images and 

language all play crucial roles due to their specific semiotic affordances. This section brings 

the threads together from the previous chapters to present a multisemiotic picture of the 

knowledge structure of physics.  
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6.1.1 Disciplinary affordances of language, mathematics and images 

Language, mathematics and images are consistently used in physics schooling and research. 

Based on the discussion in the previous chapters, we are now in a position to suggest why. 

By looking from field, we can see the types of meanings each resource specialises in and the 

types of text that organise these meanings. As we have seen, the multifaceted nature of 

physics’ knowledge is such that no resource by itself adequately construes it all; where one 

resource falls short, another takes over. The result is a complementarity, whereby the 

interplay of language, mathematics and image expound and expand the field of physics. 

Mathematics specialises in two field-specific relations: building large and interconnected 

implication complexes and measuring specific instances from generalised theory. First, 

mathematics establishes vast networks of interdependency that constitute much of the 

theoretical underpinning of physics. Each statement specifies only a small subset of these 

networks; however the symbols within statements regularly condense large sets of relations 

in related implication complexes. These implication relations can be made explicit through 

derivations, allowing the field to progress by expanding the range of phenomena it integrates. 

Second, mathematics enables movements in generality from established theory to empirical 

measurements. Through quantifications, generalised statements predict and describe specific 

instances, which in turn correspond to distinct field-specific meanings. These shifts in 

generality allow physics to maintain contact with its empirical object of study and ensure 

that evolving theory makes testable predictions about the physical world.  

Mathematics’ grammar is uniquely devoted to realising both implication complexes and 

levels of generality. Its logical component builds large univariate structures and establishes 

covariate relations between each symbol in a statement. This gives rise to large implication 

complexes that link much of physics’ technical meaning. Its operational component 

distinguishes between numbers and pronumerical symbols. The distinction means that 

mathematical symbolism grammaticalises differences in generality; pronumerical symbols 

realise higher generality while numbers realise lower generality. The logical and operative 

components of mathematics’ grammar thus display powerful functionalities. 

They do not, however, cover all aspects of the field. Aside from implication and generality, 

mathematics is limited in the field meanings it can realise. Although it can indicate small 

classification taxonomies through subscripts (for example    and    suggest two types of E) 

and can present arrays by arranging numerical measurements arranged into tables of various 
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sizes (illustrated in Table 6.1 from a university textbook), these strategies are relatively 

marginal in the data under study. The subscript grammar only allows a two-level taxonomy 

to be specified and large arrays are more commonly displayed in graphs. In essence, 

mathematics is primarily devoted to realising implication complexes and movements in 

generality; it does not establish elaborated classification or composition taxonomies, nor 

does it present activity sequences. 

 

 

Table 6.1 Arrays of atomic, neutron and mass numbers of various atoms 

(Young and Freedman 2012: 1441) 

.  

In contrast, images are more elaborate in the field-specific meanings they can realise. 

Diagrams display activity sequences in addition to organising classification and composition 

taxonomies. Graphs present large arrays and offer a counterpoint to the movements in 

generality shown by mathematics. Moreover each of these assemblies of relations can be 

illustrated in a single snapshot. The power of images is not, however, boundless. Images do 

not make a clean distinction between expectancy and implication sequences and they do not 

efficiently encode the large implication complexes condensed in mathematics. Nonetheless, 
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their wide-ranging functionality is a possible explanation for their ubiquity throughout most 

facets of physics. 

Through image and mathematics, most of the field-specific meaning of physics can be 

realised. Implication complexes, activity sequences, classification and composition 

taxonomies, arrays and generality are all covered. The question then arises, why use 

language? An exhaustive discussion of this would traverse most of the history of linguistics. 

But one reason we would highlight here is that whereas both image and mathematics are 

restricted in the range of meanings they can show, language can in some sense realise them 

all.
55

 As has been extensively documented (e.g. Halliday and Martin 1993; see also Chapter 

2) language can realise elaborate composition and classification taxonomies, as well as long 

and intricate activity sequences. Furthermore, it can distinguish expectancy from implication 

sequences (a distinction notably absent in images). In addition, it can provide a less 

technical yet more accessible precursor to the implication complexes of mathematics. This 

can be seen in Halliday’s classic example braking distance increases more rapidly at high 

speeds (1998: 225). In this example braking distance and speed are being related through a 

dependency relation, much like would happen in mathematics. However this dependency is 

not precisely specified. Language is thereby establishing an implication relation, but not 

fully specifying what it is. This understanding also allows us to reinterpret Zhao’s (2012) 

‘causation’ taxonomic relations between terms such as force and acceleration (see Chapter 2, 

Section 2.2) as implication relations specified through language. 

As well as taxonomy, implication and expectancy, language can also indicate differing 

levels of generality through generic and specific reference (Martin 1992: 103). For example, 

electrons in circular motion are accelerating (generic reference) and this electron is 

accelerating (specific reference) differ in the generality of the electron they are specifying; 

the former indicates a more general form of the latter. As Martin (1992: 103) argues ‘generic 

reference is selected when the whole of some experiential class of participants is at stake 

rather than a specific manifestation of that class.’ Finally language can display contrastive 

meanings that to a certain extent realise arrays. This is illustrated by: 

                                                           
55

 A possibly more powerful reason is that language appears to offer greater variation in tenor and mode than 

both mathematics and image. For example it allows a larger range of negotiation and appraisal options crucial 

for realising tenor relationships, and being both spoken and written it can either accompany or constitute the 

social action. Detailed tenor and mode considerations are beyond the scope of this thesis however. 



277 

 

The observation that atoms are stable means that each atom has a lowest energy level, called the 

ground level. Levels with energies greater than the ground level are called excited levels. 

(Young and Freedman 2012: 1297-8, original emphasis) 

Among other things, this text establishes a classification taxonomy of energy levels with the 

subtypes ground level and excited levels. The basis for classifying these levels arises from 

their position in an array of energy levels. The ground level has the lowest energy, while 

each excited level has a higher energy. Although not specified in this extract, each excited 

level (known as the     level,     level,     level etc.) also corresponds to a 

particular amount of energy. In distinguishing between the ground level and the excited 

levels, the language establishes an energy level array, albeit a small and relatively imprecise 

one. 

To some extent therefore, language can realise each type of field-specific meaning needed in 

physics: expectancy, implication, composition, classification, generality and array. However 

as shown for implication complexing and arrays, it does not necessarily achieve this with the 

same precision as mathematics and image. If physics requires more elaborated and 

interconnected implication relations, it can turn to mathematics; if it requires more intricate 

and detailed arrays, it can introduce images. Inverting Lemke’s (2003) formulation, we can 

therefore view language as straddling the more specialised functionalities of mathematics 

and image; language is the Jack of all trades, but only the master of some. 

Table 6.2 consolidates the field based affordances of each resource and indicates the typical 

genres or types of image that are focused on developing each of these meanings in physics 

(linguistic genres are taken from Martin and Rose 2008). As the table shows, many field-

based meanings can be elaborated in each of image, language and mathematics systems. 

However each resource construes these meanings through their own grammars, genres and 

methods of organisation. This breadth of realisation provides a range of ways for knowledge 

to be organised in physics. 
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 Mathematics Language Image 

Activity 

Expectancy  
Yes 

through procedures Sequences 

through  diagrams 

(No clear expectancy and implication distinction) 

Implication 
Complexes 

through derivations 

Sequences 

through explanations 

Taxonomy 

Composition  
Yes 

through compositional reports 

Yes 

through diagrams 

Classification 
Minimal 

(specified by subscripts) 

Yes 

through taxonomic reports 

Yes 

through diagrams 

Array 
Yes 

through tables 

Yes 

(no clear genre as yet apparent) 

Yes 

through graphs 

Generality 

Yes 

through quantifications 

(high to low generality) 

Yes 

(no clear genre as yet apparent) 

Yes 

through graphs 

(low to high generality) 

 

Table 6.2 Field affordances of language, mathematics and image for physics
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6.1.2 The knowledge structure of physics 

The survey of mathematics, image and language undertaken in this chapter reveals their 

capacity for organising the knowledge of physics. Although each resource brings its own 

ways of meaning and its own types of texts, their complementarity enables the overall 

knowledge structure of physics. Through their interaction, technical meanings built in one 

resource can be shared and consolidated among the others. In this way, physics can utilise 

the specific disciplinary affordances of each resource to evolve its understanding of the 

material world. As suggested in Chapter 5, for physics to be characterised as a hierarchical 

knowledge structure, it should display the capacity to develop ever more integrative and 

general propositions and to generate relatively unambiguous empirical descriptions. In LCT 

terms, this involves building relatively strong semantic density across a wide range of 

physical phenomena at the same time as managing a large range of semantic gravity that 

tethers theory to its empirical objects of study. This necessitates tools that can expand theory 

and consolidate data, and is achieved through the interplay of mathematics, language and 

image. 

Language is the first resource to develop technicality in physics schooling. It arranges 

technical terms through part-whole and type-subtype relations and thereby establishes deep 

taxonomies of composition and classification. In addition, it organises these terms into long 

sequences of activity that are primarily related through cause and effect. As decades of SFL 

research on science has shown, these activities can be packaged as single participants 

through both grammatical metaphor and activity entities, which can in turn function as 

technical terms in the field (Halliday and Martin 1993, Martin and Veel 1998, Halliday 2004, 

Hao 2015). Each technical term is precisely related to its surrounding composition and 

classification taxonomies, and its specific activity sequences. As more technical meaning is 

built on top of existing technicality, the constellation of meaning in physics becomes 

increasingly integrated while the range of phenomena accounted for expands. Language thus 

construes a significant degree of semantic density for physics and establishes a solid base 

upon which images and mathematics can extend this knowledge. 

Through their interaction with language, images garner technical meaning which can then be 

further related to a large number of other meanings in a single snapshot. Single images often 

make explicit multiple levels of taxonomies and large activity sequences, and thus clearly 

illustrate large segments of the knowledge constellations of physics. By presenting broad 
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swathes of technical meaning across activity and taxonomy, images can display synoptic 

glimpses of the overall semantic density of physics. In addition to reflecting this complexity, 

images also contribute semantic density over and above that created by language. On the one 

hand, images establish further relations between different types of meaning by presenting 

multiple activities and taxonomies overlaid onto each other. On the other, images more 

readily arrange technical meanings into indefinitely gradable arrays. This adds a further set 

of meanings to the field and elaborates the constellation of physics knowledge with which 

each instance of technicality is interconnected. Images thus both illustrate and magnify the 

semantic density of physics. 

Finally, mathematics amplifies physics’ semantic density by adding elaborated implication 

complexes. Like images, mathematics garners its initial technical meaning primarily from 

language. Technical symbols are then related to an indefinite number of other symbols in 

mathematical statements. Due to the enormous combinatory potential of mathematics, these 

implication complexes become indefinitely large, resulting in each symbol invoking a 

complex assembly of meanings. Each symbol thereby holds significant semantic density for 

physics. Compounding this, derivations utilise these invoked implication complexes to build 

further technical meanings. Mathematics thus arranges large constellations of meaning in 

physics and embeds a tool for expanding these constellations. It both presents and constructs 

the strong semantic density of physics. 

Working together, the interaction of images, mathematics and language fosters both strong 

semantic density and strong condensation. The constellations of physics involve deep 

composition and classification taxonomies, long activity sequences, intricate implication 

complexes and multidimensional arrays, with many technical entities invoking all at once. 

Once meaning is built in one resource, it can be shared with another to expand and amplify 

physics’ constellation of meaning, and then be returned over and again as further meaning is 

consolidated and condensed. This process of give and take enables meanings to proliferate 

and theoretical understandings to be integrated. It allows an expanding range of phenomena 

to be incorporated into generalised theory, and thus lays the foundation for constructing 

physics’ hierarchical knowledge structure. 

Complementing this, the multimodal realisation of physics also provides pathways for 

theory to connect with its physical object of study. That is, in addition to condensation, it 

provides tools for gravitation (strengthening semantic gravity) and levitation (weakening 
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semantic gravity). On the one hand mathematics allows movement from generalised theory 

to numerical instance through quantifications. This decrease in generality ensures theory can 

be tested by data and data can be predicted by theory. Mathematics’ gravitation thus ensures 

the proliferation of theory maintains relevance for the physical world. On the other hand, 

graphs offer a path from measured data to abstracted theory by generalising patterns from 

observed instances. This complements gravitation by providing a tool for levitation. 

Through mathematics and images, physics can thus move from theory to data and from data 

to theory; the empirical object of study can be used to develop theory and the theory can be 

used to predict and describe the object of study.  

Through language, mathematics and images, the knowledge of physics undergoes 

condensation, gravitation and levitation. The division of labor across these resources lays the 

platform for physics’ hierarchical knowledge structure by incorporating tools for creating 

general propositions and theories, and integrating knowledge across a range of phenomena 

(Bernstein 1999). Moreover, by creating a pathway between theory and data, these resources 

provide the means for physics to strengthen its epistemic relations between its knowledge and 

its object of study (Maton 2014). Through its use of mathematics, language and image, 

physics can broaden the horizons of knowledge and ensure that knowledge keeps in touch 

with the physical world. 

 

6.2 Semiotic description 

Chapters 2 and 3 proposed a series of principles for developing descriptions in Systemic 

Functional Semiotics. These principles took the paradigmatic and syntagmatic axes as 

theoretical primitives from which the larger theoretical architecture of semiotic resources can 

be derived. Utilising these principles allows claims such as the pervasiveness of 

metafunctions to be examined, and the rank/nesting and stratal frameworks to be justified. 

Chapters 3 and 4 used these principles to build a model of mathematics’ grammar and a 

description of the genres of mathematics and language. These models highlighted significant 

differences between mathematics and language in terms of their metafunctional organisation 

and level hierarchies, but also the potential utility of genre as a unifying stratum for the two 

resources. These observations have far-reaching implications for Systemic Functional 

Semiotics. 



282 

 

6.2.1 Metafunctions and levels in mathematics 

By beginning with axis, the grammatical description in Chapter 3 was able to derive a 

metafunctional model for mathematics. However this derivation showed that the 

metafunctional organisation of mathematics was distinct from that of language. This should 

not be surprising. If different resources are consistently used in conjunction with each other, 

it is reasonable to assume that they maintain some sort of distinct functionality. In Systemic 

Functional theory, this functionality is characterised most broadly in a resource’s 

metafunctional organisation. Since Kress and van Leeuwen (1990) it has been generally 

assumed (with some notable exceptions such as van Leeuwen 1999 for sound) that all of 

semiosis is organised with respect to three metafunctions: ideational, interpersonal and 

textual (sometimes renamed and sometimes interpreted as four if dividing the ideational 

metafunction into the logical and experiential component). In Chapter 2, it was argued that 

this assumption risked simply transposing categories from the Systemic Functional 

description of English onto other resources, and in doing so, homogenising the semiotic 

landscape. By deriving metafunctions from axis, this thesis has offered an avenue for testing 

this claim of metafunctionality. 

It was found that there does indeed appear to be a metafunctional organisation in mathematics, 

but that this organisation is not that proposed in most studies. The mathematical system has 

been shown to be principally organised around recursive systems and realised by univariate 

structures. Interpreted metafunctionally, much of its variation occurs in the logical 

component. This logical component gives rise to two levels based not on constituency (as for 

the rank scale of English), but on univariate nesting. The logical component is complemented 

by a second component based on a multivariate structure. This component does give rise to a 

constituency-based rank scale, and concerns itself with the unary operations that modify 

symbols. For this reason, it was termed the operational component. Finally, mathematics 

involves a third component, termed the textual component, that is concerned with information 

flow. 

Importantly for our general understanding of semiosis, there is no evidence for an 

independent component in mathematics comparable to the interpersonal metafunction in 

language. The operational, logical and textual components exhaust the meaning making 

resources in the register of mathematics under study, and so there is no reason to propose 

another component. Moreover, no features appear to be realised by a prosodic structure and 
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mathematics tends not to make meanings that are generally associated with the interpersonal 

metafunction in language, such as MOOD and ATTITUDE. When it does, it either necessarily 

needs language (such as the shift in speech function associated with Let x=2) or the element 

denoting this meaning is wholly dependent on systems in the logical component and thus is 

part of the logical component (such as the Relator ≠ notionally giving negative polarity). 

Mathematics, therefore, does not conform to a metafunctional organisation involving 

ideational, interpersonal and textual components. Rather it includes just two metafunctions: 

ideational (including logical and operational) and textual. By deriving metafunctions from 

axis, the description provides a counterexample to the assumption that all semiotic resources 

display ideational, interpersonal and textual functionality. This demonstrates that 

metafunctional organisation is resource-specific. In terms of Halliday’s (1992b) distinction 

between theoretical and descriptive categories, metafunctions are not theoretical categories 

generalisable for all semiosis, but rather descriptive categories that must be justified 

internally with respect to each semiotic system under study. 

This has significant ramifications for semiotics in the Systemic Functional tradition. If 

mathematics does not display an interpersonal component, but rather is largely organised 

around an ideational metafunction, is it possible that there are other semiotic resources that 

do not display an ideational component and rather revolve around an interpersonal 

metafunction? Or are there resources that do not involve metafunctional organisation at all, 

along the lines of van Leeuwen’s (1999) suggestion for sound? These questions can only be 

answered if metafunction is not taken as a theoretical primitive, but as a derivable descriptive 

category. 

Similarly, the level hierarchies in mathematics are not like those in any resource yet 

described. The grammar of mathematics involves both an obligatory rank scale and an 

obligatory nesting scale that arise from the different structural realisations. The univariate 

organisation within the logical component arranges the nesting scale, while the multivariate 

organisation within the operational component arranges the rank scale. An interaction such as 

this between two different hierarchies within the grammar is significantly different to the 

single rank scale and optional layering generally considered for language. However it may 

not be unique. In discussing the broader field of semiotic typology, Section 6.3.2 below will 

suggest that the interaction of univariate and multivariate hierarchies may in fact be a regular 

feature of academic formalisms. 
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The function-level matrix for mathematics is reproduced in Table 6.3 below. The full system 

networks for each level in the grammar and for genre are presented in Appendix B.  

 

Nesting Rank Logical Textual Operational 

statement  

STATEMENT TYPE 

REARTICULATION 

COVARIATION 

COVARIATE MULTIPLICITY 

 

 

symbol EXPRESSION TYPE 
THEME 

THEME ELLIPSIS 

UNARY OPERATION 

SPECIFICATION 

 element   ELEMENT TYPE 

 

Table 6.3 Function-level matrix for the grammar of mathematics 

 

6.2.2 Genre and register as unifying semiotics 

Chapter 4 used genre to unify language and mathematics. It showed that despite 

quantifications and derivations primarily utilising mathematics, they also regularly used 

language across various stages. Conversely, it showed that some primarily linguistic genres 

such as reports sometimes involve mathematics. In addition, it illustrated that both linguistic 

and mathematical genres regularly interact with each other using the same complexing 

relations (the exception being that mathematical genres cannot project other genres; they can, 

however, be projected). In order to account for this, a common stratum of genre was 

proposed that is realised by both mathematics and language. Like the categories developed 

in the grammar, justification for this stratum was based on the axial principles presented in 

Chapter 2. First, the complexing relations between linguistic and mathematical genres 

showed that they could be unified in a single system. Second, the relation between 

mathematical genres and mathematics’ grammar was shown to be one of abstraction rather 

than constituency. And third, the notion of genre as a connotative semiotic, and thus a 

semiotic system in its own right, positioned it theoretically in such a way that it could be 

realised by multiple denotative semiotics (language and mathematics) (c.f. Matthiessen 

2009). 
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Although both language and mathematics maintain their own distinct systems, they can be 

unified as realising a common stratum of genre. By doing this, the notion of genre 

description as mapping a culture’s meaning potential (Martin 2000, Martin and Rose 2008) 

can be strengthened, as broader configurations of meaning outside language are 

encompassed. This offers a powerful tool for understanding bimodal mathematics and 

language texts, as well as the disciplines that use them. However it remains to be seen 

whether a common stratum of genre can be deployed to encompass other semiotic resources 

such as images, demonstration apparatus and film etc. As mentioned above, the common 

system of genre realised by mathematics and language is based on the paradigmatic relations 

between the two (in particular their complexing relations) and the fact that many genres 

included in the system can in principle be realised by both mathematics and language. To 

date, this kind of paradigmatic model linking image or any other resource with language and 

mathematics has not yet been proposed. Indeed, Bateman’s intricate studies of genre in 

highly multimodal documents (2008, see also Hiippala 2015) highlights the significantly 

increased complexity when moving from the linear text-flow of written language and 

mathematics to the varied reading paths available in images and larger layouts. 

The study of images in Chapter 5 does indicate the possibility of classifying certain types of 

images as genres. Graphs in particular are a prime candidate. They maintain a regular 

structure, they construe specific dimensions of field (arrays and generality) and they 

commonly involve linguistic and mathematical elements as labels on axes and lines. 

However there remain a number of issues before graphs can be networked as part of a 

unified stratum of genre. The first is how graphs would fit in the overall system. The 

relations between graphs, and linguistic and mathematical genres would need to be explored, 

both in terms of their possible complexing relations and the paradigmatic oppositions they 

enter into. Second, without a comprehensive grammar of graphs, it is difficult to determine 

whether the regular configurations of meaning associated with graphs are better described as 

grammatical patterns or as large scale genres. And finally, although graphs seem a relatively 

clear-cut image-type, it is not so simple to distinguish between other types of image. In 

Chapter 5, graphs were opposed to a very broadly defined category of ‘diagrams’. These 

diagrams displayed immense variation, and so it remains to be seen whether diagram 

remains as a distinct category or whether it groups together a number of wholly different 

categories. Before we can propose a unified stratum of genre that incorporates language, 

mathematics and images, each of these issues must be worked out. As for grammatical 
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description, we must be wary of assuming categories such as genre without systemic and 

structural motivation. Nonetheless, a unified stratum of genre does offer a potentially 

productive avenue for understanding the highly multimodal texts regularly seen in physics 

and other academic discourse. 

Similarly, Chapter 5 showed that the register variable of field provides a useful insight into 

the similarities and differences in meaning realised by mathematics, language and image. 

Throughout the chapter, it was shown that many apparently similar meanings can be realised 

by different resources. For example, the same compositional taxonomy can be realised in a 

single image or through a stretch of language; the same range of generality can be realised 

through mathematics or through graphs; and the same sets of implication relations can be 

realised through language or mathematical symbolism. Although the construal of each 

meaning varies somewhat when realised by different resources, there is nonetheless an 

affinity among these meanings. For example, presenting a composition taxonomy in an 

image can be considered up to a point as simply another way of presenting the same 

composition taxonomy in language. By proposing a shared stratum of register (field in 

particular) these similarities can be accounted for despite their alternative realisations. At 

this stage, however, this formulation is simply a useful heuristic. Without detailed systems 

for register, we cannot definitively test such a model using the axial principles put forward 

throughout this thesis. How we understand the interaction of language, mathematics, image 

and indeed any other resource in relation to its context is still a matter for research and 

debate. Nonetheless, if genre and register could be shown to incorporate diverse realisations 

across multiple semiotic resources, it would provide a rich model for understanding context 

and the broader meanings that constitute our culture. 

 

6.3 Looking forward 

Based on the issues described above, the research in this thesis has highlighted a number of 

avenues for further research. First, looking at physics from the perspective of mathematics, 

image and language has given only a glimpse of its multifaceted knowledge. Physics 

involves numerous other resources such as demonstration apparatus, gesture and other 

symbolic formalisms that all likely form crucial components in building its knowledge. 

Second, the descriptions developed throughout have highlighted the need for a genuine 

semiotic typology that compares both the functionality and form of a wide range of 
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resources. Such a typology would allow an understanding of what types of resources are 

used in what contexts, and would give significant insights into the growth and development 

of resources across our culture. Each of these threads will be commented on briefly here. 

 

6.3.1 Understanding physics 

As we have seen, the discourse of physics is complex. Before understanding the rich 

complexity of physics knowledge and discourse, it was necessary to develop the descriptive 

model of mathematics and interpret images in terms of field. These descriptive models allow 

an understanding of the potential of these resources in construing physics’ knowledge. But 

there still remains significant work to understand how they are used in interaction in the 

diverse contexts of the classroom, student work, textbooks and in research. As a step toward 

this, Chapter 4 presented a broad map of the development of mathematics through schooling. 

This map offers a starting point for understanding how mathematics is used in education and 

shows the changes students need to deal with when progressing from primary school 

through to university. However to develop a fuller picture of physics, there are a number of 

further research paths that need to be taken. 

First, to build a more comprehensive picture of the development of physics knowledge, 

similar mappings are needed for both images and the language of physics. Scientific 

language has been studied relatively extensively within SFL (see Chapter 2), with the 

growth of grammatical metaphor and technicality steadily building through the years. 

However there has yet to be a comprehensive tracking of the ontogenetic development 

specifically within physics. Images, on the other hand, have not had the same amount of 

attention. It is clear that long before mathematics is introduced, physics uses simple images 

to build its knowledge. These simple images primarily comprise single activities that 

illustrate a specific physical phenomenon (such as a push or a pull). Through high school, 

other relations such as composition become more prevalent, and graphs are gradually 

introduced. Later on in high school and university more complex images appear with 

multiple structures mapped onto a single image. Toward the end of undergraduate university, 

graphs appear to be the predominant images that are used, with other structures (regularly of 

classification) arising from patterns in the plot. What is clear is that images are used 

throughout schooling from early primary school to the end of undergraduate university. Like 

mathematics, understanding the use of images will give insights into the types of knowledge 
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students are expected to learn and will build a fuller picture of the progression of physics 

education. 

The second avenue for further research involves a deeper understanding of mathematics. 

The descriptive model built in this thesis focused on a restricted register of algebra used in 

high school physics. When moving into university physics, however, calculus increasingly 

forms a crucial component of its discourse. As discussed briefly in Chapter 3, calculus 

utilises the multivariate structures that modify symbols. These modifiers, such as the 

differential 
  

  
 or the integral ∫, encode large sets of relations that are applied to many 

technical symbols. To include calculus, it is therefore likely that the operative component of 

the grammar will need to be considerably expanded. In addition, as calculus involves its own 

procedures for solving problems, it will require further development of the model of genre 

given in Chapter 4. Looking further afield, mathematics as a discipline involves numerous 

distinct formalisms that are used in various subfields (indeed Bernstein 1999 and O’Halloran 

2007a consider it a horizontal knowledge structure made up of multiple discrete languages). 

The elementary algebra described in this thesis is only the tip of the iceberg; mathematics is 

a semiotic resource deserving study in its own right. 

Finally, a broad map of mathematics, image and language in physics offers a general 

perspective on the development of physics. But to understand how knowledge is built day-

to-day in schooling we must look closely at classroom discourse. Classrooms involve 

innumerable episodes of knowledge building that aggregate to form an ever more 

comprehensive disciplinary understanding. When looking at physics classrooms, however, 

two issues become immediately clear. First, it is not sufficient to simply characterise each 

semiotic resource in isolation. Mathematics, language and image interact, combine and 

collaborate to produce meaning greater than the sum of their parts. Understanding 

knowledge requires more than simply understanding the intrasemiosis of each resource; it 

also requires a deep appreciation for the complex intersemiosis from which new meanings 

continually emerge. This is by no means a new idea; indeed it has been a concern since the 

earliest days of multimodality (e.g. Lemke 1998). However, we are still a long way from a 

comprehensive model of intersemiotic meaning. 

The second issue for knowledge building in physics classes is the sheer number of semiotic 

resources involved in every lesson. In addition to spoken language, written language, 

mathematics and images, physics knowledge is regularly construed through gesture (e.g. the 
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‘right hand rule’ of electromagnetism), nuclear equations (e.g. the fission reaction involving 

Uranium 235:    
      

     
         

        
      

 ), demonstration apparatus and 

numerous others. If we continue with the broad assumption that semiotic resources are used 

because they maintain some sort of unique functionality, then a comprehensive 

understanding of physics must take each of these into account. Characterising each of these 

resources, modelling their intersemiotic interactions and explaining their role in organising 

knowledge is a long term research focus that requires a continuing commitment to 

description and theoretical development. 

 

6.3.2 Towards a semiotic typology 

The final avenue for future research I will consider here involves the development of a 

robust semiotic typology. Just like language typology, semiotic typology would compare 

and contrast the form and function of semiotic resources to understand the parameters of 

variation and their contexts of use. This would greatly aid future description and theoretical 

modelling by providing a map of the range of semiotic resources used in a culture, and 

potentially offer a point of departure for future description. Whereas typological similarities 

across languages tend to be explored with respect to genetic and areal factors, similarities 

between semiotic resources are likely to be more associated with shared contexts of use. If 

multiple semiotic resources are used in a culture, this is likely so due to the different 

functions they play. Similarly, if resources evolve with similar functionalities, it is likely this 

is due to similarities in their context of use. 

This can be illustrated by comparing mathematics with two other academic formalisms: the 

nuclear equations used to show nuclear reactions and decays in physics (e.g.   

   
      

     
         

        
      

  ) and the system network notation used in 

Systemic Functional Linguistics. Each of these resources formalise relations between 

technical meanings in their respective areas and are only used in certain (more or less 

specific) academic fields. That is, they are a marker of vertical (academic) discourse and 

they encapsulate in a relatively economical way highly complex and often abstract theory. 

When looked at grammatically, they also seem to share a strikingly similar structural 

organisation. We will explore this briefly here. As described in Chapter 3, mathematics 

maintains a two-level univariate structure where elements at each level are indefinitely 
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iterative. As well as this, each symbol can take a restricted set of modifiers that conform to a 

multivariate structure. Considering nuclear equations first, we can see this resource displays 

a very similar organisation.
56

 At its minimum, a nuclear equation includes two expressions 

related by a Relator (usually →).
57

 

(6:1)   

  
         

      

expression Relator expression 

 

Like mathematics, these expressions are indefinitely iterative; there can be any number in 

sequence. The following shows three expressions:  

 

(6:2) 

   
      

       
           

        
      

  

expression Relator expression Relator expression 

 

And in a university physics textbook (Young and Freedman 2012: 1465), the beta decay of 

Xenon 140 is described using an equation with five expressions: 

(6:3) 

   
  

→   

   

     
    

  

→       
   

  

→      
    

  

→      
    

 

The indefinitely iterative nature of expressions in these equations suggests that, like 

mathematical equations, nuclear equations are best considered as having a univariate 

structure at their highest level. 

 (6:4) 

                                                           
56

 Note that despite their apparent structural similarities and some shared graphical symbols (e.g. +), 

mathematical equations and nuclear equations are distinct. Also, everything discussed here is tentative and 

requires a more in depth examination. 
57

 All examples are from Young and Freedman (2012). 
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1  2  3 

 

Within each expression, the above equations illustrate that there may also be an indefinite 

number of symbols (linked by +). For example: 

 (6:5) 

    
        

      
  

 

The combination of symbols into expressions can therefore also be seen as a univariate 

structure. This means that there are two distinct levels based on univariate structures, and 

thus that these nuclear equations display a similar nesting scale to mathematics. 

When looking at the individual symbols the structural similarities continue. First, each 

symbol may be modified by certain elements. For example the final symbol in (5) above, 

   
 , involves four elements: ‘n’ indicates the particle (a neutron), the preceding superscript 

( 
1
 ) indicates the mass number (the number of protons and neutrons in the particle, in this 

case just one), the preceding subscript ( 0 ) indicates the atomic number (the number of 

protons, in this case zero) and the full-size number (3) indicates the number of particles. 

Second, none of these elements are iterative. It is not possible, for example, to write   
  

 
 or 

      
 

  . Further, only the element indicating the symbol (e.g. ‘n’ or ‘Kr’) can occur by itself; 

all the other elements are modifiers.  

As each element performs a distinct function and none are indefinitely iterative, the symbols 

in nuclear equations display a multivariate structure, just like those in mathematics. In 

addition, each element within the symbol is constrained by what can realise it: the element 

indicating the particle can only be realised by a close set of chemical and particle symbols 

(such as ‘n’, ‘Kr’, ‘U’ etc.) and the preceding modifiers can only be realised by numbers. 

The multivariate structure thus gives rise to a rank below that involves a distinction between 

particle symbols and numbers. Nuclear equations show the same structural organisation and 

level hierarchies that mathematics does. They involve a two-level nesting scale interacting 

with a two-level rank scale. 
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Looking outside of science into linguistic formalism, we see a similar pattern. System 

networks formalise paradigmatic relations in Systemic Functional Linguistics, and so 

maintain a similar function to mathematics and nuclear equations in that they encapsulate 

highly intricate and technical relations between elements of the field. Despite being an 

image, system networks also display a remarkably similar structural organisation to both 

mathematics and nuclear equations.
58

 They are primarily organised around different layers 

of univariate complexing, with a small multivariate component at the lowest level. To see 

this, we can begin with a single system: 

 

Figure 6.1 Simple system with two choices 

 

A minimal system is made up of two choices (in this case labelled indicative and 

imperative).
59

 Both choices have the same status; their position higher or lower is 

meaningless (at least ideationally). They thus perform the same function. In addition, a 

system can in principle contain an indefinite number of choices. Figures 6.2 and 6.3 show 

systems from Chapter 3 with three and five choices respectively.
60

  

                                                           
58

 It is here that we need to heed Bateman’s (2011) warning about taking semiotic resources to be the same or 

different at face value. Although system networks appear at first glance to be images, their structure and 

contexts of use closely resemble symbolic formalisms such as mathematics. Whether this is enough to 

distinguish system networks as being distinct from other images is a matter for debate. 
59

 In this description, a choice includes both a feature (shown in lower case) and its realisation rule marked by ↘. 

This distinction will become important below. 
60

 As we are only looking at single systems, any wiring to dependent systems have been deleted and so some of 

the choices in Figure 6.3 appear unmotivated. This does not, however, affect the argument being developed. 
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Figure 6.2 Single system with three choices 

 

 

Figure 6.3 Single system with five choices 

 

As each choice performs the same function with the same status and there may be any 

number of choices in a system, a system may be considered a choice complex. That is, a 

system is organised through an obligatory univariate structure (more specifically, a 

paratactic univariate structure), with the square bracket indicating the relation between each 

choice. 
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In order to increase the generalising power of system networks, systems tend to only include 

two choices (Martin 2013). Any further distinctions are given by dependent systems that are 

one further step in delicacy. An example of this is shown in Figure 6.4. In this network, the 

least delicate system involves two choices: indicative and imperative. Two further systems 

then emanate from both the indicative and imperative choices. 

 

 

Figure 6.4 Two sets of dependent systems 

 

Adding further systems that emanate from individual choices is a form of univariate layering. 

A system (a univariate structure involving two choices, e.g. declarative vs interrogative) is 

grouped together under a single choice (indicative), with this choice entering into a higher 

level system with its own univariate structure. There are thus layers of univariate structures 

within other univariate structures. The level of delicacy in system networks can therefore be 

interpreted as the degree of layering in the formalism. 

System networks regularly involve a large amount of layering (see Appendix B for examples 

of networks with up to five steps in delicacy, and Matthiessen 1995 for very delicate 

networks for English). However there is one further type of univariate complexing that 

dramatically increases the potential of system networks. This is the potential for 

simultaneous networks indicated by braces (curly brackets). Braces allow an indefinite 
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number of systems to be related through an ‘and’ relation. Figure 6.5 shows an example of a 

network with three simultaneous systems. 

 

Figure 6.5 Three simultaneous systems 

 

Like choices within systems, systems linked by braces can be indefinitely iterative. And 

again, each system performs the same function and is of the same status; their position in the 

brace is meaningless aside from potential information organisation. This means that they 

once more display a univariate structure. As choices complex into systems and systems 

complex into larger networks, entire system networks can therefore be read as large choice 

complexes. Just as the value of any symbol in a mathematical equation is entirely dependent 

on the symbols it is related to in the equation, the value of a choice in a system network is 

entirely dependent on its relation to other choices in the network.
61

 

                                                           
61

 And so, a century later, we return to Saussure’s relational interpretation of valeur (1916). 
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Just like mathematics and nuclear equations, a system network at its minimum involves an 

obligatory univariate structure involving two elements, i.e. a system with two choices. This 

system can then further complex into larger networks through either simultaneous braces or 

univariate layering within each choice. The higher levels of system networks are thus, like 

mathematics and nuclear equations, organised univariately. 

There is one final structural similarity between system networks and both mathematics and 

nuclear equations. This is a small multivariate component at a level below its univariate 

component. To see this, we can look at individual choices, such as that for declarative given 

in Figure 6.4: 

 

The core of this choice is the feature declarative (indicated by lower case). A feature may 

occur on its own without any modification. In contrast, the ↘ + Subject^Finite that 

functions as a realisation rule cannot occur in a network on its own; it must modify a feature. 

A feature and its realisation rule thus perform two distinct functions. Further, features may 

not be repeated; there may not be multiple features within a single choice.
62

 The relation 

between a feature and its realisation rule can therefore be interpreted as a multivariate 

structure. Like in mathematics and nuclear equations, this multivariate structure gives rise to 

another network of choices at the level below: only a class indicated by lower case can be a 

feature, and only a function indicated by initial upper case can occur as a realisation. 

Despite their appearances, mathematics, nuclear equations and system networks all display 

remarkably similar organisations. At their highest levels, they maintain multiple layers of 

potentially elaborate univariate complexing (both obligatory and optional). At their lower 

levels, these complexes relate individual elements that maintain a multivariate structure, 

which in turn gives rise to a two-level rank scale. Their obligatory hierarchies are 

summarised in Table 6.4 (optional layerings are not included). 

 

                                                           
62

 Though there may be multiple realisations rules, e.g. + Subject; + Finite; Subject^Finite. All realisations, 

however, are grouped under a single linker ↘, and so these are best analysed together as performing a single 

function in relation to the feature, with the possibility for complexing within this function. 
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Mathematics Nuclear Equations System Networks 

Nesting Rank Nesting Rank Nesting Rank 

statement  equation  system  

symbol symbol choice 

 element  element  
element 

(function vs class) 

 

Table 6.4 Hierarchies in mathematics, nuclear equations and system networks 

 

If we interpret these resources metafunctionally, they each appear to be organised primarily 

through the ideational metafunction. In particular, they involve considerably expanded 

logical components based on elaborate univariate structures. Although this is a very 

preliminary analysis, nuclear equations and system networks seem to also join mathematics 

in not displaying an interpersonal component. They do not include prosodic structures, nor 

do they construe meanings typically associated with the interpersonal metafunction. It 

appears, then, that each resource backgrounds interpersonal meanings in favour of 

expanding its logical component. 

Considering the context of each resource’s use, this analysis makes sense. Each resource has 

been developed as an academic formalism to explicitly relate technical elements in their 

field. As they are concerned with field-specific meaning, it is unsurprising that they are more 

concerned with ideational meanings than other meanings (following the register-

metafunction relation where field tends to be associated with ideational meaning, tenor with 

interpersonal meanings and mode with textual meanings, Halliday 1978b). By expanding 

their logical components, each resource offers the potential for the field to relate an 

indefinitely large number of meanings. It thus presents a method through which their 

respective fields can construe increasingly expanding complexes of meaning. 

Each resource does, of course, have distinctive properties. Mathematics shows significantly 

more layering within expressions than nuclear equations; and system networks involve 

complexing of their highest nesting (systems), where mathematics does not (there are no 

statement complexes). In addition, the specific relations and choices available within each 
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resource are tailored to their own specific functionality. Moreover, when looked at from 

field, their similar grammatical architecture does not necessarily lead to similarities in the 

types of meaning they realise. System networks display large taxonomies of classification 

(declarative and interrogative are both types of indicative) and, possibly dues to the use of 

arrows in the system, they are often read as activity sequences (if you choose indicative, 

then you must choose either declarative or interrogative). Nuclear equations, on the other 

hand, more clearly show activity sequences. For example, 

   
  

→   

   

     
    

  

→       
   

  

→      
    

  

→      
   , indicates a temporal unfolding whereby Xenon 

140 undergoes beta decay to become Cesium 140, which then undergoes further beta decay 

to become Barium 140 etc. In contrast, as we have seen, mathematics realises large 

implication complexes with no suggestions of temporal unfolding. 

Despite these differences, their strikingly similar architectures in comparison to that of 

language do indicate a possible recurring motif in academic formalism. As resources such as 

these are developed within specific disciplines to construe field-specific meaning, they will 

evolve to encapsulate meaning relevant to the field (i.e. ideational meaning). Moreover, as 

they occur alongside language, they will likely develop distinct organisations and 

functionalities to language; if not, they would be redundant (and would not evolve). By 

exploring semiotic resources along these lines, it is possible to ask whether a large logical 

component based on a univariate structure is a regular feature of academic formalism in 

certain fields. If so, this would give an insight into the boundaries of language for construing 

technical meaning. But to know this, we need much more detailed studies of a larger range 

of academic formalisms; we would need to know whether the various families of symbolic 

logic, chemical formulae, linguistic phrase structure notation, programming languages and 

numerous other idiosyncratic formalisms share similar organisations.  

More broadly, we would need a genuine semiotic typology that compares and contrasts the 

functionality of semiotic resources. Such a typology would allow generalisations to be 

developed that would allow a fuller understanding of semiosis in our culture. It would also 

provide a platform from which descriptive studies can begin their explorations. This 

typology would need to be based on descriptions that consider each semiotic resource on its 

own terms, and develop according to explicit and shared descriptive principles. The model 

of mathematics developed in this thesis looks significantly different to the Systemic 

Functional model of language. But when considered in relation to resources that share 
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similar contexts of use, they appear to show a number of affinities. A semiotic typology 

would make explicit these similarities and differences and take a step toward mapping the 

wide world of semiosis that we live in. 

 

6.4 Physics, knowledge and semiosis 

We began this thesis with the observation that physics is hard. It involves spoken language, 

written language, mathematics, images, nuclear equations, demonstration apparatus and 

gesture to construe a large and highly technical knowledge structure. By developing models 

of this knowledge structure and the resources that organise it, we have taken a step toward 

understanding how it works and how it is similar to or different from other disciplines. From 

these models, we can build educational programs that allow teachers to more effectively 

teach physics. And from this, we can make it easier for students to access this knowledge 

and the literacy practices associated with it. 

Similarly, semiotics is hard. It has a vast and multifaceted object of study that encompasses 

all the meanings that constitute human culture. The last thirty years have seen a dramatic 

broadening of its horizons, with an appreciation of the multitude of ways of meaning that 

pervade every aspect of our lives. By taking these ways of meaning seriously and 

considering them on their own terms, we can take a step toward understanding how they 

work and how they are similar to or different from other meanings. From this, we can begin 

to understand how our culture organises both its knowledge and its ways of knowing. 
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APPENDIX A 

System Network Conventions  

Systems reproduced from Matthiessen and Halliday (2009).  

Realisation statements primarily reproduced from Martin (2013) with some adaptations. 

Systems 
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Realisation statements 

A realisation statement consists of an operator, such as insert or conflate, and one or more 

operands, at least one of which is a grammatical function. 

major type operator operand 1 operand 2 example 

(i) structuring 

insert (+) 

expand ( ( ) ) 

order ( ^ ) 

subclassification (Xy) 

Function 

Function 

Function 

Function 

- 

Function 

Function 

Function 

+ Subject 

Mood (Subject) 

Subject^Finite 

ResultNumerical 

(ii) layering conflate ( / ) Function Function Subject/Agent 

(iii) inter-rank 

realisation 
preselect ( : ) Function feature(s) 

Subject: 

nominal group 

 

One of the operands of “order” may also be a boundary symbol, as in # ^ Theme and 

Moodtag^#. 

The different types of realisation statement are outlined in more detail below: 

(1) Presence of Functions in the structure: the presence of a Function in a Function structure 

is specified by inserting the Function into the structure; the operation of insertion is 

symbolised by “+”; e.g. + Subject, + Mood, etc. 

 

(2) Functional constituency relations: two Functions may be related by constituency and to 

specify this constituency relationship in the Function structure one Function is expanded 

by the other; the expansion is symbolised by putting the expanding constituent Function 

within parenthesis, e.g. Mood (Subject), which means that Mood is expanded to have 

Subject as a constituent Function. A Function may be expanded by more than one other 

Function, e.g. Mood (Subject, Finite). 

 

(3) Relative ordering of Functions and ordering relative to unit boundaries: two Functions 

may be ordered relative to one another in the Function structure and this relative ordering 

is symbolised by the “^”; e.g. Subject^Finite, Mood^Residue. The ordering may also be 

relative to the left or right boundary of a grammatical unit (represented by #), e.g. 

#^Theme and Moodtag^#. 
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A distinction can be made between sequencing Functions directly after one another, e.g. 

Subject^Finite, and sequencing Functions with respect to one another, e.g. Subject  

Finite (meaning that the Subject comes before the Finite but that another Function, for 

example a Mood Adjunct, might intervene). 

 

(4) Conflation of one Function with another: one Function from one perspective is conflated 

with a Function from another perspective, i.e. the two Functions are specific as different 

layers of the same constituent – they are identified with one another. Conflation is 

symbolised by “/”; for example, Subject/Agent means that Subject (interpersonal) and 

Agent (ideational) apply to the same constituent. 

 

(5) Realisation of a Function in terms of features from the rank below: the realisation of a 

Function in a Function structure is stated by preselecting one of more features from the 

unit realising it; preselection is symbolised by “:”, e.g. Subject: nominal group, Finite & 

Predicator: verbal group, etc. 

 

A distinction can be made between the realisation of a Function through a feature 

(formalised as Function: feature) and lexicalisation of a Function through a specific 

lexical item (e.g. formalised for Tagalog interrogatives as Q::ba). Embedding can be 

defined as the realisation of a Function through a feature from the same or higher rank. 

 

(6) Subclassification of a Function: one Function can be subclassified into two or more 

different Functions, i.e. the subclassified Function is a less delicate generalisation of the 

Functions subclassifying it. Subclassification is indicated by a subscript, where the 

subclassifying Function is the subscript of the more general Function, e.g. ResultNumerical 

indicates that Numerical subclassifies Result.



320 

 

APPENDIX B 

Full System Networks for Mathematics 
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Genre 
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Grammar: Statement nesting 
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Grammar: Symbol rank/nesting 
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 Grammar: Element rank 
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APPENDIX C 

Details of corpus 

 Data 

Primary School 

(~6-12 years old) 

 Excerpts from eight general science textbooks. 

o Focused forces and motion  (classical mechanics) 

Junior High School 

(~12-16 years old) 

 Excerpts from five general science textbooks. 

o Focused on forces and motion (classical mechanics) 

Senior High School 

(~16-18 years old) 

 Excerpts from five physics textbooks. 

o Four focusing on forces and motion (classical 

mechanics) 

o One focusing on quantum physics 

 Excerpts from video and audio of one unit in a final year 

high school classroom. 

o Includes sixteen classes focusing on quantum 

physics 

 Marked final exam student responses focusing on quantum 

physics, classical mechanics, special relativity and 

electromagnetism 

o Seven exams ranging from high to low achieving 

responses 

1
st
 Year 

Undergraduate 

University 

 Excerpts from one physics textbook 

o Focusing on quantum physics 

 Excerpts from video and audio of one unit in an 

undergraduate lecture series. 

o Includes twelve lectures on quantum physics 

 Marked final exam student responses focusing on quantum 

physics, fluid physics and electromagnetism. 

o Twenty exams ranging from high to low achieving 

responses 

 

 



326 

 

Textbooks used in study 

 

 

Primary School 

Ardley, N. (1992) Science for Kids: Movement. London: Dorling Kindersley. 

Bardon, K. (1991) Exploring Forces and Structures. Hove: Wayland. 

Bentley, J. (2003) Start Science: Forces and Motion. London: Chrysalis. 

Eason, S. (2009) What are Forces and Motion? Sydney: Franklin Watts. 

Farndon, J. (2003) Science Experiments: Motion. New York: Marshall Cavendish. 

Gordon, B. (2001) Hands on Science: Over 40 Fantastic Experiments: Forces and Motion. 

Morgan, B. (2003) Elementary Physics: Motion. London: Brown Reference Group. 

Riley, P. (2001) Ways into Science: Push and Pull. London: Franklin Watts. 

 

Junior High School 

Haire, M., Kennedy, E., Lofts, G. and Evergreen, M. J. (1999) Core Science 1. Milton: John 

Wiley and Sons. 114-139. 

Haire, M., Kennedy, E., Lofts, G. and Evergreen, M. J. (2000) Core Science 4. Milton: John 

Wiley and Sons. 108-135. 

Mau, J. (1999) Science Australia 4. Carlton: Curriculum Corporation. 2-24. 

Shadwick, B. and Barlow, S. (2003a) About Science 2. Marrickville: Science Press. 207-219 

Shadwick, B. and Barlow, S. (2003b) About Science 4. Marrickville: Science Press. 1-21. 
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Senior High School 

de Jong, E., Armitage, F., Brown, M., Butler, P. and Hayes, J. (1990) Heinemann Physics in 

Context: Physics One: Energy in Everyday Life: Movement and Electricity. Port Melbourne: 

Heinemann Educational. 242-276. 

Marsden, G. R. (2003) Timesavers Senior Physics: Quanta to Quarks. Peakhurst: Timesavers.  

a1-b44. 

Warren, N. (2000) Excel Preliminary Physics. Glebe: Pascal. 110-149. 

Wiecek, C., Zealey, B., Hynoski, M., Mathur, J. and Tatnell, I. (2005) Physics in Context: 

The Force of Life. Preliminary. South Melbourne: Oxford University Press. 178-246. 

Williams, K. J. and Pemberton, J. (2001) Spotlight Physics: Preliminary. Marrickville: 

Science Press. 151-202. 

 

First Year Undergraduate University 

Young, H. D. and Freedman, R. A. (2012) Sears and Zemansky’s University Physics: With 

Modern Physics. 13
th

 ed. Boston: Addison-Wesley. 

 

 


