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Abstract

Building a natural language parser can be seen as a task of creating an artificial
text reader that understands the meaning expressed in some text. This thesis aims
at a reliable modular method for parsing unrestricted English text into feature-rich
constituency structure using Systemic Functional Grammars (SFG). SFGs are chosen
because of their versatility to account for the complexity and phenomenological diversity
of human language.

The descriptive power of a Systemic Functional Grammar (SFG) lies in its separation
of descriptive work across “structure” (i.e., syntagmatic organisations) and “choice”
(i.e., paradigmatic organisations). A shortcoming for parsing, however, is that SFL has
been primarily concerned with the paradigmatic axis of language, and accounts of the
syntagmatic axis of language, such as the syntactic structure, have been put in the
background.

Moreover, parsing with features that depart from directly observable grammatical
variations towards increasingly abstract semantic features comes at the cost of high
computational complexity, which still presents today the biggest challenge in parsing
broad coverage texts with full SFGs.Previous research has discussed how each successive
attempt to construct parsing components using SFL then led to the acceptance of
limitations either in grammar size or in language coverage.

One of the main contributions of this thesis is the investigation to what degree
cross-theoretical bridges can be established between Systemic Functional Linguistic
(SFL) and other theories of grammar, in particular Dependency Grammar, in order to
compensate for the limited syntagmatic accounts. A second main contribution is to
research how suitable predefined graph patterns are for detecting systemic features in
the constituency structure in order to reduce the complexity of identifying increasingly
abstract grammatical features.

The technical achievement of this thesis lies in the development and evaluation
of a SFG parser, named Parsimonious Vole. The implementation follows a pipeline
architecture comprising two major phases: (a) creation of the constituency structure
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from Dependency graphs and (b) structure enrichment with the systemic features using
graph pattern matching techniques.

The empirical evaluation is based on two manually annotated corpora. First one
covers constituency structure and Mood features, and second corpora covers the more
abstract Transitivity features. The parser accuracy at generating constituency structure
(76%) is slightly lower than that achieved in previous research, while the accuracy to
detect Mood (60%) and Transitivity (42%) could not be compared to any previous
works because either such features are missing or the results are not comparable.

The current work concludes that (a) reusing parse results with other grammars
for structure creation and (b) employing graph patterns for enrichment with systemic
features constitutes a viable solution to create feature-rich constituency structures in
SFL style.
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Chapter 1

Introduction

1.1 On artificial intelligence and computational lin-
guistics

In 1950 Alan Turing in a seminal paper (Turing 1950) published in Mind was asking if
“machines can do what we (as thinking entities) can do?” He questioned what intelligence
was and whether it could be manifested in machine actions indistinguishable from
human actions.

He proposed the famous Imitation Game also known as the Turing test in which a
machine would have to exhibit intelligent behaviour equivalent or indistinguishable from
that of a human. The test was set up by stating the following rules. The machine (player
A) and a human (player B) are engaged in a written natural language conversation
with a human judge (player C) who has to decide whether each conversation partner is
human or a machine. The goal of players A and B is to convince the judge (player C)
that they are human.

This game underpins the question whether “a computer, communicating over a
teleprinter, (can) fool a person into believing it is human?”, moreover, whether it
can exhibit (or even appear to exhibit) human(-like) cognitive capacities (Harnad
1992). Essential parts of such cognitive capacities and intelligent behaviour that the
machine needs to exhibit are of course the linguistic competences of comprehension (or
“understanding”) and generation of “appropriate” responses (for a given input from
the judge C). The Artificial Intelligence (AI) field was born from dwelling on Turing’s
questions. The term was coined by McCarthy for the first time in 1955 referring to the
“science and engineering of making intelligent machines” (McCarthy et al. 2006).



2 Introduction

The general target is to program machines to do with language what humans
do. Various fields of research contribute to this goal. Linguistics, amongst others,
contributes with theoretical frameworks systematising and accounting for language in
terms of morphology, phonology, syntax, semantics, discourse or grammar in general. In
computer science increasingly more efficient algorithms and machine learning techniques
are developed. Computational linguistics provides methods of encoding linguistically
motivated tasks in terms of formal data structures and computational goals. In addition,
specific algorithms and heuristics operating within reasonable amounts of time with
satisfiable levels of accuracy are tailored to accomplish those linguistically motivated
tasks.

Computational Linguistics (CL) was mentioned in the 1950s in the context of
automatic translation (Hutchins 1999) of Russian text into English and developed
before the field of Artificial Intelligence proper. Only a few years later CL became a
sub-domain of AI as an interdisciplinary field dedicated to developing algorithms and
computer software for intelligent processing of text (leaving the very hard questions of
intelligence and human cognition aside). Besides machine translation CL incorporates
a broader range of tasks such as speech synthesis and recognition, text tagging, syntactic
and semantic parsing, text generation, document summarisation, information extraction
and others.

This thesis contributes to the field of CL and more specifically it is an advancement
in Natural Language Parsing (NLP), one of the central CL tasks informally defined
as the process of transforming a sentence into (rich) machine readable syntactic and
semantic structure(s). Developing a program to automatically analyse text in terms
of such structures by involving computer science and artificial intelligence techniques
is a task that has been pursued for several decades and still continues to be a major
challenge today. This is especially so when the target is broad language coverage and
even more when the desired analysis goes beyond simple syntactic structures and
towards richer functional and/or semantic descriptions useful in the latter stages of
Natural Language Understanding (NLU). The current contribution aims at a reliable
modular method for parsing unrestricted English text into a feature rich constituency
structure using Systemic Functional Grammars (SFGs).

In computational linguistics, broad coverage natural language components now
exist for several levels of linguistic abstraction, ranging from tagging and stemming,
through syntactic analyses to semantic specifications. In general, the higher the degree
of abstraction, the less accurate the coverage becomes and, the richer the linguistic
description, the slower the parsing process is performed.
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Such working components are already widely used to enable humans to explore and
exploit large quantities of textual data for purposes that vary from the most theoretical,
such as understanding how language works or the relation between form and meaning, to
very pragmatic purposes such as developing systems with natural language interfaces,
machine translation, document summarising, information extraction and question
answering systems to name just a few. Nevertheless there is still a long way to go
before machines excel in these narrowly scoped tasks and even longer before machines
start using language in the ways humans do.

1.2 Living in a technologically ubiquitous world
Human language has become a versatile highly nuanced form of communication that
carries a wealth of meaning which by far transcends the words alone. When it comes
to human-machine interaction this highly articulated communication form is deemed
impractical. So far humans had to learn to interact with computers and do it in a
formal, strict and rigorous manner via graphical user interfaces, command line terminals
and programming languages. Advancements in Natural Language Processing (NLP)
are a game changer in this domain. NLP starts to unlock the information locked in
human speech and make it available for processing to computers. NLP becomes an
important technology in bridging the gap between natural data and digital structured
data.

In a world such as ours, where technology is ubiquitous and pervasive in almost all
aspects of life, NLP becomes of great value and importance regardless of whether it
materialises as a spell-checker, an intuitive recommender system, spam filters, (not so)
clever machine translators, voice controlled cars, or intelligent assistants such as Siri,
Alexa or Google Now.

Every time an assistant such as Siri or Alexa is asked for directions to the nearest
Peruvian restaurant, how to cook Romanian beef stew or what is the dictionary
definition for the word “germane”, a complex chain of operations is activated that
allows ‘her’ to understand the question, search for the information you are looking
for and respond in a human understandable language. Such tasks are possible only
in the past few years thanks to advances in NLP. Until now we have been interacting
with computers in a language they understand rather than us. The next challenge is
to develop a technology that enables computers to interact with us in a language we
understand.
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1.3 NLP for business
NLP opens new and quite dramatic horizons for businesses. Navigating with limited
resources stormy markets of competitors, customers and regulators and finding an
optimal answer/action to a business question is not a trivial task. In this section I
present a few example application areas and use them to discuss tasks that need to be
accomplished for NLP in such contexts. These examples underline the ever growing
need for NLP putting into perspective the need of ever deeper and richer linguistic
analysis across a broad range of domains and applications.

Markets are influenced by information exchange and being able to process massive
amounts of text and extracting meaning can help in assessing the status of an industry
and play an essential role in crafting a strategy or a tactical action. Relevant NLP
tasks for gathering market intelligence are named entity recognition (NER), event
extraction and sentence classification. With these tasks alone one can build a database
about companies, people, governments, places, events together with positive or negative
statements about them and run versatile analytics to audit the state of affairs.

Compliance with governmental, European or international regulations is a big issue
for large corporations. One question for addressing this problem is whether a product is
a liability or not and if yes then in which way. Pharmaceutical companies for example,
once a drug has been released for clinical trials, need to process the unstructured
clinical narratives or patient’s reports about their health and gather information on
the side effects. The NLP tasks needed for this applications are primarily NER to
extract names of drugs, patients and pharmaceutical companies and relation detection
used to identify the context in which the side effect is mentioned. The NER task
helps transforming a sentence such as “Valium makes me sleepy” to “(drug) makes me
(symptom)” and relation detection will apply patterns such as “I felt (symptom) after
taking (drug)” to detect the presence of side effects.

Many customers, before buying a product, check online reviews about the company
and the product regardless of whether it is pizza or a smartphone. Popular sources
for such inquiries are blogs, forums, reviews, social media, reports, news, company
websites, etc. All of these contain a plethora of precious information that stays trapped
in unstructured human generated text. This information if unlocked can play a great
role in company’s reputation management and decisions for necessary actions to improve
it. The NLP tasks sufficient to address this business are sentiment analysis to identify
attitude, judgement, emotions and intent of the speaker, and co-reference resolution,
which connects mentions of things to their pronominal reference in the following or
preceding text. These tasks alone can extract the positive and negative attitudes
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from the sentence “The pizza was amazing but the waiter was awful!” and connect
it to the following sentence “I love when it is topped with my favourite artichoke”,
disambiguating the sentence so that it is clear that it is about pizza and not the waiter
and so discover a topping preference.

NLP is heavily used in customer service in order to figure out what a customer
means not just what she says. Interaction of companies with their customers contain
many hints pointing towards their dissatisfaction and interaction itself is often one of
the causes. Companies record, transcribe and analyse large numbers of call recordings
for extended insights. They deploy chat bots for increased responsiveness by providing
immediate answers to simple needs and also decrease the load on the help desk staff.
NLP tasks that are essential in addressing some of the customer service needs are
speech recognition that converts speech audio signal into text and question answering
which is a complex task of recognising the human language question, extracting the
meaning, searching relevant information in a knowledge base and generating an ineligible
answer. Advances in deep learning allow nowadays skipping the need for searching
in a knowledge base by learning from large corpora of question-answer pairs complex
interrelations.

The above cases underline the increased need for NLP whereas the variation and
ever increasing complexity of tasks reveal the need for deeper and richer semantic and
pragmatic analysis across a broad range of domains and applications. Any analysis of
text beyond the formal aspects such as morphology, lexis and syntax inevitably leads
to a functional paradigm of some sort which can be applied not only at the clause level
but at the discourse as a whole. This makes the text also an artefact with relation
to the socio-cultural context where it occurs. Yet there is still much work to be done
before the technology is capable to reach such complex levels of automatic analysis.

1.4 Linguistic framework
The present work is conducted under the premise that a theory of language is important
and worth adopting. In current work the Systemic Functional (SF) theory of language
is adopted because of its versatility to account for the complexity and phenomenological
diversity of human language providing descriptions along multiple semiotic dimensions.
It is possible, in NLP, to reach considerable results even without the adoption of such
a framework. This is demonstrated by the advancements in (deep) machine learning.
Such methods, however, fail to provide any explanation covering why or how a solution
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is reached. This explanation is extended further in this section emphasising SFL
strengths.

Any meaningful description or analysis involving language implies some theory
about language’s essential nature and how it works. A linguistic theory includes also
goals of linguistics, assumptions about which methods are appropriate to approach those
goals and assumptions about the relation between theory, description and applications
(Fawcett 2000: 3).

In his seminal paper “Categories of the theory of grammar” (Halliday 1961), Halliday
lays the foundations of Systemic Functional Linguistic (SFL) following the works of
his British teacher J. R. Firth inspired by Louis Hjelmslev (Hjelmslev 1953) from
the Copenhagen School of linguistics and by European linguists from the Prague
Linguistic Circle. Halliday’s paper constitutes a response to the need for a general
theory of language that would be holistic enough to guide empirical research in the
broad discipline of linguistic science:

. . . the need for a general theory of description, as opposed to a uni-
versal scheme of descriptive categories, has long been apparent if often
unformulated, in the description of all languages (Halliday 1957: 54; em-
phasis in original) . . . If we consider general linguistics to be the body of
theory, which guides and controls the procedures of the various branches
of linguistic science, then any linguistic study, historical or descriptive,
particular or comparative, draws on and contributes to the principles of
general linguistics (Halliday 1957: 55)

Embracing the organon model formulated by Bühler (1934), Halliday refers to
the language functions as metafunctions or lines of meaning that offer a trinocular
perspective on language through ideational, interpersonal and textual metafunctions.
Thus, in SFL language is first of all an interactive action serving to enact social
relations under the umbrella of the interpersonal metafunction. Then it is a medium
to express the embodied human experience of inner (mental) and outer (perceived
material) worlds via the ideational metafunction. Finally the two weave together into
a coherent discourse flow whose mechanisms are characterised through the textual
metafunction.

SFL regards language as a social semiotic system where any act of communication
is regarded as a conflation of linguistic choices available in a particular language.
Choices are organised on a paradigmatic rather than syntagmatic (structural) axis and
represented as system networks. Moreover, in the SFL perspective language has evolved
to serve particular functions influencing the structure and organisation of the language.
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However, their organisation around the paradigmatic dimension leads to a significantly
different functional organisation than those found in several other frameworks, as Butler
(2003a,b) has extensively addressed. Also, making the paradigmatic organisation of
language a primary focus of linguistic description decreases the importance of the
formal structural descriptions which from this perspective appear as realisations of
(abstract) features.

A linguistic description is then provided at various levels of granularity, which in
SFL is called delicacy. Just as the resolution of a digital photo defines the clarity and
the amount of detail in the picture, in the same way delicacy refers to how fine- or
coarse-grained distinctions are made in the description of the language.

There is no distinction, in the SFL tradition, between lexicon and grammar. And
to emphasise this fact the term lexico-grammar is used, which means the combination
of grammar and lexis into a unitary body (see Section 3.1). A deeper description of
the SFL theory of language is provided below in Chapter 3.

To the present two major variants of Systemic Functional Grammars (SFG) have
been developed: the Sydney Grammar (Halliday & Matthiessen 2013b) and the Cardiff
Grammar (Fawcett 2008). The latter, as Fawcett himself regards it, is an extension
and a simplification of the Sydney Grammar (Fawcett 2008: xviii). Each of the two
grammars has advantages and shortcomings (presented in Chapter 3) which I will
discuss from the perspective of theoretical soundness and suitability to the goals of the
current project.

Both the Cardiff and Sydney grammars have been used as language models in
natural language generation projects within the broader contexts of social interaction.
Some researchers (Day 2007; Kasper 1988; O’Donnell 1993; O’Donoghue 1991b; Souter
1996) consequently attempted to reuse the grammars for the purpose of syntactic
parsing. I come back to these works in more detail in Section 2.

To sum up, in this thesis I adopt the Systemic Functional Linguistic (SFL) framework
because of its versatility to account for the complexity and phenomenological diversity
of human language providing descriptions along multiple semiotic dimensions, i.e.
paradigmatic, syntagmatic, meta-functional, stratification and instantiation dimensions
(Halliday 2003c) and at different delicacy levels of the lexico-grammatical cline (Halliday
2002; Hasan 2014). To what degree it is possible to produce analysis automatically
and what the benefits of such descriptions are still remain to be explored. Moreover it
is still unexplored how much of the SFL descriptive potential needs to be employed
in practice in order to achieve useful results or solve problems as those exemplified in
Section 1.3. The concepts introduced above and other elements of the SFL theory will
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be addressed in Chapter 3 below. In order to provide a clearer picture on what the
SFG analysis represents the next section provides an example.

1.5 A systemic functional analysis example
To provide a better intuition of the current work, this section describes an analysis
of a simple sentence in Example 1. It will guide us starting from traditional “school
grammar” concepts down to a detailed systemic functional description of the sentence.
As stipulated in the previous section, SFL provides us with a variety of functions and
features serving to express text meaning from several perspectives. Another source of
the descriptive breadth is achieved through a practice of feature systematisation as
mutually exclusive choices. The feature analysis provided here is partial and restricted
to only two constituents (the clause and it’s Subject) as this suffices to provide the
reader with an intuition of what to expect from a full analysis.

(1) He gave the cake away.

School grammar teaches us how to perform a syntactic analysis of a sentence. So
let’s consider Example 1 in order to perform one. First we would assign a part of speech
such as verb, noun, adjective etc. to each word; then we would focus on clustering
words into constituents guided by the intuitive question “which words go together as
a group”. Following these actions we will arrive to a word clustering like the one in
Figure 1.1.

He gave the cake away.

He gave the cake

the cake

away

Fig. 1.1 Constituency diagram for Example 1

Figure 1.1 depicts a constituency division of Example 1.The nodes represent gram-
matical constituents and the edges stand for the structure-substructure composition.
Next we can move on to assign constituent classes and grammatical functions. Here
the sentence is formed of a single clause which has four constituting functional parts: a
subject designating who the clause is about, a predicate indicating the action performed
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by the subject, a complement denoting what was in the scope of the action and an
adjunct describing its destination. Each of these functional parts is filled by a pronoun,
a verb, a nominal group and an adverb, respectively. This analysis can be seen in
Figure 1.2 as a constituency tree where the nodes carry classes and functions within
parent units. In the figure, nodes have been split into three sections for clarity purposes.
The first section is filled with text fragments, the second (in blue) with unit classes
and the third (in red) with unit functions.

He gave the cake away.
clause

He
pronoun
Subject

gave
verb

Main verb

the cake
nominal group
Complement

the
determiner
Modifier

cake
noun
Head

away
adverb

Adjunct

Fig. 1.2 Constituency analysis of Example 1 with unit classes and grammatical functions

Next each constituent can be assigned a set of relevant linguistic features. For
example: the subject “He” is a pronoun whose features, well defined in traditional
grammar, are: singular, masculine, and 3rd person. For example singular means
non-plural, masculine means non-feminine and 3rd person means non-1st and non-2nd.
These are closed classes meaning that there is no 4th person or that there is no common
grammatical gender in English as some other languages have - as for example Danish.
These features can be systematised (see Figure 1.3) as three systems of mutually
exclusive choices that can be assigned to pronominal units. Note that the gender is
enabled for 3rd person singular pronouns which can be expressed as in Figure 1.3 below.
This representation constitutes what in SFL is called a system network and will be
formally introduce in Chapter 3.

In SFG the pronouns are systematised in the system network of Person from
Introduction to Functional Grammar (Halliday & Matthiessen 2013b: 366) with a
different structure, this is depicted in Figure 1.4. This systematisation reflects a semiotic
perspective where language is placed into an interactive context. The (red) rectangles
from the figure represent selections that are applicable to the Subject constituent “He”
in the example above. These selections are the result of traversing a system network
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pronoun

PERSON

1st

2nd

3rd GENDER
feminine

masculine

neuter

PLURALITY singular

plural

}

Fig. 1.3 The systematisation of three pronominal features in traditional grammar

deciding at each step which branch to follow and advancing to the next system in case
one is available.

From the perspective of an agent generating the utterance in Example 1, to produce
the pronoun “he” in the subject position that agent has to make a few choices in
the system network. This process is called system network traversal. A simplified
traversal for selecting the needed pronominal referent can be described as follows. For
now, to make it simpler, the explanation of how the decisions are made is omitted
focusing mainly on the traversal process itself. So, first the deciding agent chooses in
the PERSON system whether the referent participates in the interaction or not (see
Figure 1.4). In our example the referent does not participate so the non-interactant
feature is selected and we proceeds towards the next system further distinguishing the
type of non-interactant. It can be plural or, as in our case, singular leading to the
one-referent feature. Next, the referent needs to be differentiated on the consciousness
axis which, in our example, is a conscious thing. And finally conscious referents need
to be distinguished by gender, which in this example is masculine and therefore male
sex type is chosen. This path of choices uniquely identifies the pronoun “He” in a
system network which also defines, just like the one in Figure 1.3, the boundaries of all
choice possibilities.

PERSON

interactant
INTERACTANT-
TYPE

speaker

speaker-plus

addressee

non-interactant
NON-
INTERACTANT-TYPE

one-referent
ONE-
REFERENT-TYPE

non-conscious

conscious
SEX-
TYPE

male

female

plural-referent

Fig. 1.4 The selections in Person system network from Halliday & Matthiessen (2013b: 366)
for pronoun “He”

Lets take now the clause constituent that is the root of the constituency tree (see
Figure 1.2) and see how SFL features can be applied to it. If in traditional grammar,
the clause is usually ascribed relatively few features, e.g. as having passive voice,
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positive polarity and simple past tense; in terms of SFL grammar the corresponding
features are many more, i.e. major, positive, active, effective, receptive, agentive, free,
finite, temporal, past, non-progressive, non-perfect, declarative, indicative, mood-non-
assessed, comment-non-assessed. Figure 1.5 depicts the selections applicable to the
clause constituent in Example 1 from a Mood system network that is an adaptation of
the Mood network proposed in Halliday & Matthiessen (2013b: 162). These selections
represent choices made by a natural language generation system when producing
the utterance by a process similar to the one explained for the pronominal referent
above (Matthiessen & Bateman 1991). The traversal description is omitted for brevity.
Organisation of the linguistic features in system networks is one of the main things that
distinguishes SFL from other linguistic traditions. I will formally introduce system
networks, how they are structured and how they function, in Chapters 3 and 7 that
follow below.

So far we have seen constituents assigned syntactic functions such as Subject,
Complement, Adjunct etc. In SFL, they are elements of the interpersonal metafunction
which will be explained in Chapter 3. SFL provides more linguistic features and
functions depending on the kind of meaning it aims at describing. For example
another view on the same clause can be provided from a perspective that in SFL
is called experiential and roughly corresponds to what in traditional linguistics is
known as semantic roles. It is systematised, in SFL, as Transitivity, which aims at
providing domain independent semantic frames called process configurations. They
describe semantic actions and relationships, along with semantic roles ascribed to
their participants. These semantic frames generally are “governed” by verbs and more
specifically by each (type of) verb meaning. The verb meanings, in SFL Transitivity,
are not considered specific to lexical items as in traditional grammar. They are types
of verb meanings defined by process configurations and each can manifest through a
variety of lexical items. This is explained in detail in Chapter 3.

The clause in Example 1 corresponds to a Possessive semantic frame where “He” is
the Agent and Carrier while “the cake” is the Affected and Possessed thing. Example
2 provides these annotations. These configurations and participant roles correspond to
the Transitivity system network proposed by Neale (2002) in the context of the Cardiff
grammar. As will be explained in Chapter 4, in the current work I combine elements
of the Sydney and Cardiff grammars.

(2) [Agent−Carrier He] gave [Affected−P ossessed the cake] away.

Most constituents of clause structure have more than one function, which is called
a conflation of elements. For example in Example 2, “He” is the Agent(-Carrier) doing
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clause
STATUS

major

POLARITY-
TYPE

positive

negative
NEGATIVE-
TYPE

interpersonal
INTERPERSONAL-
TYPE

syntactic
SYNTACTIC-
TYPE

verbal-group-marker

nominal-group-marker

adverbial-group-marker

morphological

textual
TEXTUAL-
TYPE

continuative-marker

conjunctive-marker

VOICE-
TYPE

active

passive

AGENCY-
TYPE

middle

effective
EFFECTIVE-
VOICE

operative

receptive
AGENTIVITY agentive

non-agentive

FREEDOM free

bound

FINITNESS

non-finite
NON-
FINITE-TYPE

imperfective

perfective

finite

DEICTICITY

temporal

TIME
past

present

future

PROGRESSIVITY progressive

non-progressive

PERFECTIVITY perfect

non-perfect

modal
MODAL-
TYPE

root
ROOT-
TYPE

inclination-volition

obligation-permission

ability

epistemic
EPISTEMIC-
TYPE

probability

usuality

INDICATIVE-
TYPE

declarative

interrogative
INTERROGATIVE-
TYPE

yes-no

wh
WH-
SELECTION

wh-subject

wh-complement

wh-adjunct

MOOD-
TYPE

indicative

MOOD-
ASSESSMENT

mood-assessed
MOOD-
ASSESSMENT-TYPE

modality

temporality

intensity

mood-non-assessed

COMMENT-
ASSESSMENT

comment-assessed
COMMENT-
ASSESSED-TYPE

epistemic-evaluative

non-epistemic

comment-non-assessed

imperative

minor

}

Fig. 1.5 The feature selections in the Mood system network for clause constituent in Example
1

the act of giving but also the Subject of the sentence. So we say that Actor and
Subject functions are conflated in the constituent “He”. This is where the concept
of metafunction or strand of meaning comes most prominently into the picture. The
Subject function is said to belong to the interpersonal metafunction, while the Agent(-
Carrier) function belongs to the experiential metafunction. These concepts are addressed
in detail in Chapter 3.

There are more functions and features that can be assigned to the constituents in
Example 1 but this is sufficient for the current purposes of introduction. Figure 1.6
summarises everything discussed above into a partially filled constituency tree. The
constituents that were not discussed are assigned only a few functions. The last (green)
section of every node in the constituent tree is filled with a limited set of grammatical
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He gave the cake away.
clause

major, positive, active, effective, receptive, agentive, free, finite,
temporal, past, non-progressive, non-perfect, declarative, in-

dicative, mood-non-assessed, comment-non-assessed, posessive

He
pronoun

Subject, Participant,
Agent & Carrier

3rd person, singular,
male, non-interactant,
one-referent, conscious

gave
verb

Main Verb, Finite,
Process

the cake
nominal group

Complement, Participant,
Affected & Possessed

the
determiner

Deictic, Modifier

cake
noun

Head, Thing

away
adverb

Adjunct,
Circumstance,

Location

Fig. 1.6 Representation of Example 1 as feature rich constituency tree

features selected from system networks. In practice the feature set is much richer
than those shown in the nodes in Figure 1.6; the restriction aims simply to avoid an
over-crowded example and simplify the exposition. Important to underline here is
the systemic functional anchoring of the features into system networks that is SFL
practice.

Next I describe what opportunities and limitations exist in automatically producing
rich SFL analyses as until now it has not been possible to use these detailed analysis in
computational contexts. This makes them unavailable for corpus work, for training data
in machine learning and other end-user application scenarios provided as motivation in
Section 1.2 above.

1.6 Challenges of parsing with SFGs
In this section I describe the main challenges for using Systemic Functional Grammars
(SFG) in computational contexts in general and parsing in particular. The first and the
main challenge in parsing with SFGs is that of computational complexity. This problem
stems partially from the manner in which grammars are structured and partially from
the fact that paradigmatic descriptions have received most of the attention in SFL at
the expense of the syntagmatic one. The second challenge is parsing with features that
depart from directly observable grammatical variations towards increasingly abstract



14 Introduction

semantic features. Next follows a detailed description of the main problems starting
with the imbalance between paradigmatic and syntagmatic accounts in SFL. Then the
computational aspects are brought into the picture as a comparison between the natural
language generation and parsing tasks. Finally the problem of parsing abstract features
is described drawing parallels to the semantic role labelling (SRL) task well-defined in
mainstream computational linguistics (Carreras & Màrquez 2005).

1.6.1 Syntagmatic descriptions in SFL

Since it was established, SFL has been primarily concerned with the paradigmatic
axis of language. Accounts of the syntagmatic axis of language, such as the syntactic
structure, have been put in the background. Within SFL, as we will see in Chapter
3, structure is a syntagmatic ordering in language capturing regularities and patterns
which can be paraphrased as what goes together with what. It has been placed on the
theoretical map and defined in terms of rank, unit, class and function, but afterwards
it received minimal attention.

Most of the descriptive work in SFL is carried paradigmatically via system networks
(Definition 3.2.10) describing what could go instead of what (Halliday & Matthiessen
2013b: 22). Focusing on the paradigmatic organisation in language is in fact the
feature that sets SFL apart from other approaches to study language. This has led
to progress in accounting for how language works at all strata but little has been
said about language constituency. This can be considered “unsolved” within SFL
accounts leaving a “gap in what must be one the central areas of any characterisation
of language” (Bateman 2008: 25).

If we attend to SFL literature, however, the syntagmatic dimension is implicit and
present everywhere in the SFL literature, which makes the above claims sound surprising.
For instance all example analyses in the Introduction to Functional Grammar (Halliday
& Matthiessen 2013b) are predominantly syntagmatic. Moreover, Robin Fawcett for
decades promotes the motto no system network without realisation statements (Fawcett
1988b: 9) which means that every paradigmatic description must be accompanied by
precise rules how it is syntagmatically realised in text. Yet, despite these inducements,
the situation could not have been more different. Bateman (2008) presents in detail
why there is a severe imbalance between syntagmatic and paradigmatic axes in SFL,
how it came to be this way and how it is especially damaging to the task of automatic
text analysis, even if quite beneficial for the text generation task.
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1.6.2 Computational complexity appears in parsing

O’Donnell & Bateman (2005) offer a detailed description to the long history of SFL being
applied in computational contexts yielding productive outcomes on language theorising,
description and processing (Bateman & Matthiessen 1988: 139). The transfer between
SFL and computation typically involved a delay between the theoretical formulation
and the computational instantiation of that formulation (Matthiessen & Bateman 1991:
19). The theoretically formulated ideas contain hidden pitfalls that are revealed only
upon explicit formulations required in computation (Bateman 2008: 27).

The active exchange between SFL theory and computation has been almost entirely
oriented towards automatic natural language generation. Such systems take abstract
semantic specifications as input and use grammars to produce grammatically correct
and well-connected texts.

Automatic analysis or parsing can be seen as a reverse problem of finding appropriate
analysis within a search space of possible solutions. That is to identify, as accurately
as possible, the meaning systematised in the grammar of a given natural language
sentence. As seen in Section 1.5 above, an account of the sentence meaning would
have to provide two things. First a description in terms of a formal structure of the
sentence revealing the constituents plus their syntactic relations to each other. And
second, a description in terms of a (complete) set of features, detailed to the extent
that grammar permits, applicable to each constituent of structure.

One of the grammars successfully used in generation tasks is the Nigel grammar
developed within the Penman generation project (Mann 1983). The efficiency in gener-
ation tasks is, in part, due to decomposition of language along the paradigmatic axis
using functionally motivated sets of choices between functionally motivated alternatives
(McDonald 1980). The Nigel grammar contains 767 grammatical systems defined
over 1381 grammatical features, which Bateman evaluated in 2008 as “a very large
computational grammar by current standards, although nowadays by no means the
broadest when considered in terms of raw grammatical coverage” (Bateman 2008: 29).

The computational processes driving natural language generation relied heavily on
the notion of search. A well defined search problem is defined in terms of a precise
description of the search space which then helps a navigation process effectively to find
solutions. The paradigmatic organisation of the lexico-grammar as system networks
assumed within SFL turns out to organise the search space for possible grammatical
units appropriately for expressing communicative goals in generation in an almost ideal
manner (Bateman 2008: 28).
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If, in the generation process, the abstract semantic specifications are increasingly
materialised through choice making by traversing the system network towards finally
generated text (see example in Section 1.5), then, in the parsing process, the reverse
is the case. The process starts from a given sentence and aims to derive/search the
feature choices in the system network applicable to each of the constituents. But if the
paradigmatically organised lexico-grammatical resource is effective for generation it
turns out, as we will see next, to be by far unsuitable for the analysis task because
the size of the search space is too big to be computed in a reasonable time. Halliday
himself mentions this problem when he asks how big is a grammar?

Given any system network it should in principle be possible to count the
number of alternatives shown to be available. In practice, it is quite difficult
to calculate the number of different selection expressions that are generated
by a network of any considerable complexity (Halliday 1996: 10).

The issue is that of handling a combinatorial space which emerges from the way
connections and (cross-)classifications are organised in a system network. The orien-
tation of systemic grammars towards choice means that a typical grammar includes
many disjunctions, which leads to the problem of search complexity. Also the abstract
nature of systemic features leads to a structural richness that adds logical complexity
to the task (O’Donnell 1993). So estimating the size of the grammar would in fact
mean estimating the potential number of feature combinations.

For example, if we consider a hypothetical network of 40 systems then the “size of the
grammar it generates lies somewhere between 41 and 240 (which is somewhere around
1012)” (Bateman 2008: 28). Moreover, it is not easy to calculate where the upper limit
of a grammar would fall even when the configuration of relations of a particular system
network is known. To parse with the Nigel grammar, mentioned above, would mean
exploring a search space of approximately 3× 1018 feature combinations (Bateman
2008: 35). A more detailed break down of the complexity by rank or primary class is
provided in Table 1.1.

For the generation task the size is not an issue because the number of choice points
is actually rather small. The paradigmatic organisation is, in fact, a concise and
efficient way to express the linguistic choices where the possible feature selections
are relevant only when they are enabled by prior paradigmatic choices and it is only
those alternatives that need to be considered (Halliday 1996: 12–13). This property of
gradual exposure of choices characterises the traversal of the system networks which
starts from the root and gradually advances towards more delicate features down to a
set of leaves.
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rank or primary class size
adverbial-group 18
words 253
quantity-group 356
prepositional-phrase 744
adjectival-group 1045
nominal-group >2×109

clause >3×1018

Table 1.1 Size of major components of the Nigel grammar expressed in terms of the number
of selection expressions defined (Bateman 2008: 35)

In the analysis task, the paradigmatic context of choice that helps navigation
during the generation process is no longer available. It is not known any
longer which features of a systemic network are relevant and which are
not. This leads to a radical asymmetry between the two tasks. That is: in
generation, the simple traversal of the network finds only the compatible
choices because that is what the network leads to; whereas in analysis it is
not evident in advance which path to follow and therefore the task is to
explore the entire search space in order to discover which features apply to
the text. This means that any path is potentially relevant and needs to be
checked leading to evaluation of the system network as a whole. There is
then no way to restrict the search space on solely paradigmatic grounds as
in the case of generation (Bateman 2008: 29).

1.6.3 Parsing with semantic features

Another difficulty in parsing with SFGs lies in the fact that, as the analysis moves
away from directly observable grammatical variations towards more abstract semantic
variations, the difficulty of generating an accurate account increases drastically. The
Transitivity system network for example consists of such semantic features and it is
comparable to the task of (shallow) semantic parsing or Semantic Role Labelling (SRL)
(Carreras & Màrquez 2005).

SRL is the process that assigns labels to words or phrases in a sentence that
indicate their semantic role in the sentence, such as that of an agent, goal, or result.
The main challenge of SRL, well explained in Gildea & Jurafsky (2002: 245–250),
remains the same since Winograd (1972): moving away from the domain specific,
hand-crafted semantic specifications towards domain independent and robust sets of
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semantic specifications. Significant contribution to this challenge was undertaken in
several projects to build large broad-scope lexico-semantic databases such as FrameNet
(Baker et al. 1998; Fillmore et al. 2003; Johnson & Fillmore 2000) and VerbNet (Kipper
et al. 2008; Schuler 2005). A similar database exists for the Transitivity system network
as described in Fawcett (forthcoming) called the Process Type Database (PTDB) (Neale
2002). It is worth mentioning WordNet (Fellbaum & Miller 1998) as well, which
organises the meanings of nouns, adjectives and adverbs.

Such databases provide domain independent semantic frames (Fillmore 1985),
known in SFL as configurations or figures, e.g. Action, Cognition, Perception, Possession
etc. They describe semantic actions and relationships between participants each playing
a distinct semantic role within the frame e.g. Agent, Carrier, Possessed, Phenomena
etc. For instance the perception frame contains Perceiver and Phenomenon roles
annotated in Example 3.

(3) [Agent−P erceiver Jacqueline] glanced [P henomenon at her new watch].

One challenge in this work is to implement a semantic parsing process for the
Transitivity systemic network employing PTDB as the lexical-semantic resource.

1.6.4 Covert elements

Besides the challenge of identifying configurations and their participants in text, the
problem with semantic features goes one step further. Sometimes the participant
roles correspond to constituents that are displaced or not realised in the text, which
are called covert constituents(Fawcett 2008: 115,135,194), gaps (Ross 1967), empty
elements (Müller 2018: 557–575) or null elements (Chomsky 1981, 1982, 1986). This
increases the challenge of identifying frames and assigning roles correctly and next is
explained why.

For a frame to be considered correctly realised in text, at least its mandatory roles
must be filled by constituent units. This requirement constitutes a minimal semantic
completeness constraint. This can be demonstrated by erasing parts of the text in
Example 3. If we take the Agent-Perceiver away as in Example 4 the texts is perceived
as incomplete because it is not possible to interpret its meaning. It leaves us with the
question Who glanced at her new watch? Similarly, if we delete the Phenomenon as in
Example 5, we are unable to resolve the meaning of the text without first answering the
question what or who did Jacqueline glance at? This shows that configurations need to
satisfy the minimal semantic completeness condition when realised in text. Conversely,
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one of the fundamental assumptions in this thesis, although perhaps too exigent, is
that the input text is well-formed and the completeness condition is satisfied.

(4) glanced at her new watch

(5) Jaqueline glanced

Consider now Example 6 consisting of a sentence that has three non-auxiliary verbs:
seem, worry and arrive. According to the Cardiff grammar (introduced in Chapter
3) it corresponds to three clauses embedded into each other. Table 1.2 provides the
constituency analysis in the Cardiff style of Example 6.

(6) She seemed to worry about missing the river boat.

She seemed to worry about missing the river boat.
clause

Subject Main Verb Complement
clause

Infinitive Element Main Verb Complement
clause

Binder Main Verb Complement
Table 1.2 SF constituency analysis in Cardiff grammar style of Example 6

Table 1.3 provides the participant role configurations (i.e. the semantic frames)
these verb meanings bring about. Usually the first role corresponds to the Subject
function and the second role is filled by a Complement unit.

The verb meaning seem1 corresponds to an Attributive configuration that distributes
Carrier and Attribute roles to the Subject “She” and the Complement “to worry about
missing the river boat”. In the case of worry about1 and miss1 the first roles provided
by the Cardiff grammar are compound, i.e. composed of two simple ones. In the
example above, worry about1 distributes the Phenomenon to the Complement “about
missing the river boat” and the Agent-Cognizant role to an empty Subject that is said
to be non-realised, covert or a null element. A similar situation holds for miss1 that
assigns an Affected-Carrier role to the empty Subject and the Possessed role to the
Complement “the river boat”.

Those unrealised Subjects in the embedded clauses are recoverable from the im-
mediate syntactic context (i.e. no need for discourse) and correspond, in this case, to
the Subject in the higher clause. This is annotated in Examples 7 and 8. We can just
mark the places of the null Subjects in the embedded clause in order to be able to
assign the semantic labels this way ensuring that the minimal completeness constraint
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Verb meaning Semantic
configuration

Participant role distribution

seem1 Attributive Carrier + Attribute
worry about1 Two Role Cognition Agent-Cognizant + Phenomenon

miss1 Possessive Affected-Carrier + Possessed
(thing)

Table 1.3 Semantic role configurations according to Fawcett (forthcoming); Neale (2002)

is fulfilled; otherwise the frame cannot be assigned to the constituents and another one
must be searched for instead. Notice also an index i to highlight that the null elements
correspond to the higher clause Subject “She”.

(7) She worried about missing the river boat.
(8) She missed the river boat.
(9) Shei seemed [null-Subjecti to worry [about null-Subjecti missing the river boat]].

Now that the places of the covert constituents are explicitly marked in Example
9 and the recoverable constituents coindexed, we can distribute the semantic role
configurations from Table 1.3 as provided in Table 1.4.

Shei seemed ∅i to worry about ∅i missing the river boat.
Attributive configuration

Agent Attribute
Two role cognition configuration

Agent & Cognizant Phenomenon
Possessive configuration

Affected & Carrier Possessed
Table 1.4 Transitivity analysis in Cardiff grammar style (Fawcett forthcoming; Neale 2002)

of Example 6

In language there are cases where constituents are empty but recoverable from
the immediate vicinity by relying in most cases on syntactic means, while in a few
others additional lexical-semantic resources are needed. In SFL, Fawcett describes
these elements in the context of the Cardiff grammar (Fawcett 2008: 115,135,194) but
provides no means to recover them. The Government and Binding Theory (GBT)
developed in Chomsky (1981, 1982, 1986) and based on phrase structure grammar,
provides a detailed account of mechanisms to detect and resolve the empty constituents.
GBT explains how some constituents can move from one place to another, where the
places of non-overt constituents are and what constituents they refer to, i.e. what their
antecedents are. Such accounts of empty elements are useful in determining the correct
distribution of participant roles across the clause constituents.
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1.6.5 Problem summary

This section has shown the main challenges related to parsing with SFG, which can
be summarised as follows. First, the parsing task cannot be treated as a reversible
generation task because the methods that have been shown to work for generation
are not usable for parsing as such due to a high computational complexity. Second,
the parsing task, regardless of the grammar, should first and foremost account for
the sentence structure on the syntagmatic axis and only afterwards for the (semantic)
features selected on the paradigmatic axis. The syntagmatic account in SFL is
insufficient for the parsing task. Third, the syntagmatic account alone does not provide
enough clues for assignment of semantic features (like in Table 1.3) and requires a
lexical-semantic account within the grammar or as a separate resource. Moreover,
semantic parsing can be aided by identification of places where covert constituents are
said to exist.

Next I will describe how these problems have been addressed in the current work,
what the goals of the thesis are and what has been left for future work.

1.7 Goals and scope of the thesis
This thesis aims at a modular method for parsing unrestricted English text into a
Systemic Functional constituency structure using fragments of Systemic Functional
Grammar (SFG) and dependency parse trees.

The computational complexity, the lack of proper syntagmatic description in SFL
and perhaps other hidden reasons, have led to the results of parsing with SFGs so
far to not be usable in real world applications. This conclusion is drawn from past
attempts such as Kasper (1988), Kay (1985), O’Donoghue (1991b), O’Donnell (1993)
and Day (2007), to mention just a few, none of which managed to parse broad coverage
English with full SFG without aid of some sort. A detailed account of the current state
of the art in parsing with SFGs is provided in Chapter 2. Some parsing approaches
use a syntactic backbone which is then fleshed out with an SFG description. Others
use a reduced set or a single layer of SFG representation; and the third group use
an annotated corpus as the source of a probabilistic grammar. Each had to accept
limitations either in grammar or language size and eventually used simpler syntactic
trees as a starting point.

Some linguistic frameworks, other than SFL, have been shown to work well in
computational contexts solving problems similar to the ones identified above. For
the purposes of this thesis I selected Dependency Grammar (DG) and, in addition,
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accounting for covert elements according to GBT. And instead of attempting to find
novel solutions within the SFL framework, an alternative approach, I argue in the
next section, is to establish cross-theoretical and inter-grammatical links and to enable
integration of the existing methods, resources and solutions in order to maximise reuse
of positive outcomes.

The process developed in this thesis follows a pipeline architecture (see Section
1.7.4) comprising of two major phases: structure creation and structure enrichment.
The structure creation phase aims to account for the syntagmatic dimension of language.
The structure enrichment phase aims at discovering and assigning systemic features
(accounting for the paradigmatic dimension of language) stacking to each of the nodes
constituting the structure.

1.7.1 On theoretical compatibility and reuse

In the past decades much significant progress has been made in natural language
parsing framed in one or another linguistic theory, each adopting a distinct perspective
and set of assumptions about language. The theoretical layout and the available
resources influence directly what is implemented into a parser and each implementation
approach encounters challenges that may or may not be common to other approaches
in the same or other theories.

Parsers implementing some theoretical framework may face common or different
challenges to those implementing another theoretical framework. The converse can be
said of the solutions. When a solution is achieved using one framework it becomes
potentially reusable in other ones provided a degree of adaptation. Thus the successes
and achievements in any school of thought can be regarded as valuable for other ones
to the degree cross theoretical links and correspondences can be established. In this
thesis reusing components that have been shown to work and yield “good enough
results” is a strong pragmatic motivation in the present work which brings us to
Research question 1.

Research question 1 (Reuse positive results). To what extent can resources and
techniques from other areas of computational linguistics be reused for SFL parsing and
how?

In this thesis three linguistic frameworks are employed, namely Systemic Functional
Linguistics, Dependency Grammar and Government & Binding Theory. SFL has
already been motivated as the target analysis framework in Section 1.4. The other
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two frameworks are employed because their accomplishments in those domains carry
answers to the above stated problems.

In the past decade Dependency Grammar (Tesniere 2015) has become quite popular
in the natural language processing world and is favoured in many projects and systems.
The small grammar size and the modern algorithms implemented into dependency
parsers such as the Stanford Dependency Parser (Marneffe et al. 2006), MaltParser
(Nivre 2006), MSTParser (McDonald et al. 2006) and Enju (Miyao & Tsujii 2005) are
increasingly efficient and highly accurate. Among the variety of dependency parsing
algorithms, a special contribution is made by machine learning methods such as those
described in McDonald et al. (2005), McDonald & Pereira (2006), Carreras (2007),
Zhang & Nivre (2011), Pei et al. (2015) to name just a few.

Research question 2 (Compatibility of DG and SFG). To what degree are the
syntactic structures of the Dependency Grammar and Systemic Functional Grammar
compatible to undergo a transformation from one into the other?

The dependency parse structures provide information about functional dependencies
between words and grants direct access to the predicate-argument relations. This
information may be sufficient to supplement the missing syntagmatic account in SFL.
In addition, it provides some functional information that may help to reduce the
complexity of system network traversing. These hypotheses, formulated as Research
question 2, are investigated at the theoretical level in Chapter 5 and are then empirically
evaluated in Chapter 10 based on Stanford Dependency parser version 3.5 (Marneffe
et al. 2014; Marneffe & Manning 2008a,b).

Research question 3 (Compatibility of GBT and SFG). How can Government and
Binding Theory be used for detecting places of null elements in the context of SFL
constituency structure?

The problem of accounting for null elements, mentioned above, is not addressed
either in SFL or in Dependency Grammar. It is, however, addressed in detail in the
Government and Binding Theory (GBT) (Chomsky 1981; Haegeman 1991b), which
is one of Chomsky’s families of Transformational Grammars (Chomsky 1957). One
other goal in this thesis is to investigate, as formulated in Research question 3, to
which degree GBT accounts of null elements can be reused as DG or SFG structures
to support a cross-theoretic transformation enabling those accounts in DG or SFG
contexts. Chapter 6 introduces GBT and investigates this hypothesis providing some
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of the cross-theoretic and inter-grammatical links to Dependency and SFL grammars
that, as we will see in Chapter 9, benefits the Transitivity analysis.

1.7.2 Towards the syntagmatic account

The problem of structure construction can be outsourced for parsing with other
grammars. This is done in the work of Kasper (1988) and of Honnibal (2004) and
Honnibal & Curran (2007), who used phrase parse structures of the Chomskian style
grammars. This approach is known in the SFL literature as parsing with a syntactic
backbone. In this case, the problem changes into creating a transformation mechanism
to obtain the SFL constituency structure rather than building it from scratch.

Research question 4 (Suitability of Stanford DG). How compatible are the gram-
matical categories and practices in the Stanford Dependency grammar with the re-
quirements of SFGs?

This thesis addresses the problem of constituency structure building by parsing the
text with the Stanford Dependency parser version 3.5 (Marneffe et al. 2014; Marneffe &
Manning 2008a,b) and then transforming the parse result into an SFG constituency tree.
The degree to which Stanford dependencies are suitable to serve as a syntactic backbone
is one of the questions addressed in this thesis (Research question 4). An account of
the correspondence between linguistic primitives or configurations of primitives in the
dependency grammar to SFG primitives is provided at the end of Chapter 5 along
with an analysis of the Stanford dependency grammar. A detailed description of the
structure generation process is provided in the Chapter 8.

1.7.3 Towards the paradigmatic account

Once the constituency structure is in place it serves as a foundation and informs
the following process of feature enrichment. The configurations of units carrying
grammatical categories and functions into structural patterns serve as “hooks” to guide
the traversal of system networks in a way resembling the realisation rules.

The system network fragment in Figure 1.7 contains realisation rules inscribed in
rectangular boxes positioned below some features. These realisation rules indicate
what will be reflected in the structure when a specific feature is selected (as discussed
in Section 1.6). The converse is also true: if structure contains a certain pattern then
it is a (potential) manifestation of a given feature.
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major
+Main Verb

MOOD-
TYPE

indicative
INDICATIVE-
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declarative
Subject ^ Finite
-Wh-subject

interrogative
INTERROGATIVE-
TYPE

yes-no
Finite ^ Subject

wh
WH-
SELECTION

wh-subject

wh-complement

wh-adjunct

imperative
-Subject

Fig. 1.7 A fragment of mood system from Halliday & Matthiessen (2013b: 366)

For example, the structure of a major clause needs to have a predicate or Main Verb
element realised. In the parsing process, testing whether there is a unit functioning as
Main Verb below the clause node suffices to assign the feature major to that clause.
Next, if the clause has no unit functioning as Subject then it should be assigned the
imperative feature, otherwise the indicative one. Further the INDICATIVE-TYPE
system is enabled. Here the test is whether a Subject node is positioned in front of the
Finite node and whether the Subject does not contain the pronoun “who”. This sort of
query on the structure can be formulated in terms of structure patterns (see Section
7.3), which are associated with features in the system network in the same manner as
the realisation rules.

Such patterns can be identified in the instance structure, which means that the
features can be identified through associated structure patterns. In the current parsing
method, pattern recognition plays an essential role for fleshing out the constituent
backbone with systemic features. The structural patterns are tested to see whether
they match (see Section 7.4) anywhere in the constituency structure and if so then the
matched nodes are enriched with the features provided in the pattern (described in
Section 7.5). This process is detailed in Section 9.2.

The structure patterns in this thesis are expressed as graph patterns (described in
Section 7.3). Note that I employ the concept of graph and not that of a tree because
the latter are too restrictive for the purpose of the current work. While most of the
time they are hierarchically structured as a tree, there are a few patterns that involve
sibling connections or nodes with multiple parents. In both cases the tree structure is
broken. The graph construct allows a wide range of structural configurations including
trees. This comes with the cost of higher computational power and is subject for
optimisations in future work.

Most of the graph patterns in this thesis have been manually created. Because this is
laborious exercise only a few system networks have been covered in the implementation
of the parser. Nonetheless they suffice for claims of feasibility and deriving sufficient
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insights regarding the parsing approach. Future work may investigate how graph
patterns can be generated automatically from the realisation rules of large grammars
such as Nigel.

Research question 5 (Coverage of syntactic patterns). What degree of systemic
delicacy can be reached using syntactic patterns alone without any lexical-semantic
resources?

The pattern may consist solely of syntactic specifications or it can also carry
lexical-semantic descriptions. The two main system networks targeted in this thesis are
MOOD and TRANSITIVITY (described in Chapter 4). One hypothesis contained in
Research question 5 is that the MOOD network is composed of syntactically identifiable
features and so the graph patterns need involve no more than unit classes and functions
available in the constituency structure.

Research question 6 (PTDB suitability). How suitable is the Process Type
Database as a resource for SFL Transitivity parsing?

Performing semantic parsing, with the method employed in this thesis, requires
graph patterns covering the semantic features of the TRANSITIVITY network. This
thesis employs the Process Type Database (PTDB) (Neale 2002) to aid generation
of such patterns. The appropriateness of PTDB for these tasks is interrogated by
Research question 6 and addressed in Chapters 4 and 9. In the next section an overview
is presented of how these processes fit together in a uniform parsing process.

1.7.4 Parsimonious Vole architecture

The current thesis is accompanied by a software implementation called the Parsimonious
Vole parser. It is programmed in the Python language and is available as an open
source distribution1. It takes the text of an English sentence as input and outputs a
rich systemic functional constituency structure. This section explains the implemented
parsing process architecture.

The parser follows the pipeline architecture depicted in Figure 1.8. Three types of
boxes are used here: (a) the red rounded rectangles in the middle represent parsing
steps, (b) the green trapezoid boxes represent input and output data and (c) the orange
double framed trapezoid boxes represent external resources involved in the parsing
process, e.g. system network, graph patterns, lexical-semantic databases etc.

1https://bitbucket.org/lps/parsimonious-vole

https://bitbucket.org/lps/parsimonious-vole
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The parsing steps linearly flow from one to the next via green trapezoid boxes on
the left-hand side of the diagram. This means that the output data of a step constitutes
the input for the next one. On the right-hand side are positioned double edged orange
trapezoids representing fixed resources needed by some operations. For example, the
graph normalisation step takes a set of graph patterns that serve as normalisation rules
indicating how to update the input.

Two green vertical arrows are provided on the far right of the diagram delimiting
parsing phases: Graph Building (spanning the first three process steps) that accom-
plishes construction of the constituency backbone (motivated in Section 1.7.2 above),
and the second phase, Graph Enrichment (spanning the last three process steps),
fleshes out the backbone with features (motivated in Section 1.7.3).

The parsing process starts from an English text which is sent to the Stanford
Dependency parser (Chen & Manning 2014) version 3.52 to produce a Dependency
parse graph of that text. The output is a sequence of dependency graphs corresponding
to sentences delimited by punctuation marks.

The dependency graphs often contain errors. Some of these errors are predictable
and so easy to identify and correct. Also, some linguistic phenomena are treated
in a slightly different manner than that proposed in the current thesis. Therefore,
dependency graphs produced by the Stanford parser are Corrected and Normalised
against a collection of known errors and a set of normalisation rules using pattern
matching techniques.

Afterwards, the normalised dependency graph is ready to guide the building process
of the systemic functional constituency graph. Through a traversal of the dependency
graph the constituency graph is constructed in parallel guided by a Rule Table. This
table contains the mapping of structural context fragments from the dependency
grammar (i.e. node type, edge type, combinations of the two etc.) to constituency
graph nodes. The structural mappings are accompanied by operation specifications to
perform during each traversal step. The output of this step constitutes the syntactic
backbone on which the subsequent enrichment phases are performed.

Next follows the phase where each constituent node of the syntactic backbone is
enriched with features. Some of these are syntactic in nature and others are lexical-
semantic. In between these enrichment phases there is an additional construction
process adding where needed empty constituents that play an important role in semantic
enrichment. The enrichment steps use system networks, feature rich lexicons, graph
patterns and the PTDB semantic database as additional resources. The null element

2https://nlp.stanford.edu/software/nndep.html

https://nlp.stanford.edu/software/nndep.html
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Fig. 1.8 The parsing process pipeline

creation process also needs a collection of graph patterns for identifying where and
what kind of null elements occur (motivated in Section 1.6 and explained in detail
in Chapter 6). The final result of the process is a Rich Constituency Graph of the
original text comprising a substantial set of systemic feature selections associated with
constituting units of structure.
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The detailed parser implementation choices and developed algorithms are presented
in Chapters 8 and 9. The next section lays out the thesis structure indicating the
important contributions of each chapter.

1.8 Thesis overview
Chapter 1 has provided an introduction to the work described in this thesis. It has
indicated the areas to which it seeks to contribute, and described the motivation of
work from an applied and a theoretical perspective. Chapter 2 presents a brief list of
selected works on parsing with SFG.

Chapter 3 provides an overview of the SFL theoretical foundations. There are
two outstanding traditions in SFL, each providing a theory of grammar. The first is
developed in Sydney by Halliday, Matthiessen, Hassan, Martin, Rose and others. The
second is developed in Cardiff by Fawcett, Tucker, Tench and others. I present both
schools in the first two sections of the chapter and then, in the third section, I provide
a comparative critical discussion of both theories of grammar, motivating relaxation
of the rank scale, an approach to structure formation, unit classes and a few other
concepts relevant to the current work.

Chapter 4 provides a description of the grammar implemented in the Parsimonious
Vole parser. This grammar contains a selection of unit classes from both the Sydney and
Cardiff grammars following the theoretical motivation from the previous chapter. Here
is also presented a selection of two system networks: MOOD and TRANSITIVITY,
that were selected to demonstrate how the current parsing method works. The former
system network is tightly linked to the syntagmatic variations in the structure whereas,
the latter describes ideational choices of the semantic structures and, thus, is farther
from surface variations. In order to integrate this system network, I use the lexical
database of verb meanings called the Process Type Database (Neale 2002).

Chapter 5 introduces Dependency Grammar (Tesniere 1959), starting with its origins
and foundations, evolution into its modern form, its applications in computational
contexts particularly highlighting the Stanford grammatical model and parser. The
usage of dependency grammar and dependency parse graphs was motivated in 1.7.2
as the primary input into the current parsing pipeline for creating the constituency
structure. The last part of the chapter provides a set of principles and generalisations
to establish a cross-theoretical bridge from DG towards SFG which is implemented
into the Parsimonious Vole parser.



30 Introduction

Chapter 6 starts with an introduction to Government and Binding Theory (GBT)
explaining where empty constituents occur in sentences. These constituents were
motivated in Section 1.6 and are a part of the solution for parsing with the TRANSI-
TIVITY system network. The second section of the chapter provides an inventory of
different null elements and the last section provides, just as in the previous chapter, a
cross theoretical overview, this time from GBT phrase parse structures into Stanford
dependency grammar. This chapter provides a theoretical translation of the principles
from GBT into DG constituting the theoretical foundations for the technical solutions,
given in Section 9.3, for how to create null elements in DG and SFG graphs.

Chapter 7 provides the building blocks of the algorithms of this thesis. It makes
the transition from linguistic theoretic presentations towards the computer science
foundations introducing necessary typed sets, feature structures and graphs. These
concepts are employed in the chapters that follow to represent linguistic constructs
described in the previous chapters. An important role, in the current work, is played
by the pattern graphs and the operations enabled by using them presented in Sections
7.3 – 7.5. The pattern graphs, as will be presented later, constitute a flexible and
expressive method to represent systemic feature realisation rules. Also in this chapter,
the system networks are defined in a simplified form corresponding to how they are
currently used along with a simple strategy for choice propagation.

The first phase of the parsing pipeline (see Figure 1.8) concerning the constituency
graph building is entirely covered by Chapter 8. This chapter presents how the input
dependency graphs are first corrected, normalised and then rewritten into constituency
graphs. The implementation of Parsimonious Vole also contains a full set of mapping
rules between Stanford Dependency v3.5 to SFG constituency structure enumerated in
Appendix E.

The second phase of the pipeline (see Figure 1.8) concerning the enrichment of the
constituency graph with increasingly more semantic features is described in Chapter 9.
This chapter addresses two main system networks, that of MOOD and TRANSITIVITY
as introduced in Chapter 4. The MOOD features are close to syntactic variation of text
and can be addressed via graph patterns alone; this is described in the first part of the
chapter. The TRANSITIVITY features are semantic in nature and require additional
lexical-semantic resources from which graph patterns are generated first and then
applied to enrich the constituency graph. The work presented in this chapter comprises
a set of syntactically grounded graph patterns covering Mood and a few other small
system networks. It provides a clean machine-readable version of the PTDB along
with a method to automatically transform PTDB records into semantically oriented
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Transitivity graph patterns. Also, graph patterns and algorithms have been developed
to capture several principles and mechanisms for detecting null elements in texts.

Chapter 10 describes how the Parsimonious Vole parser was evaluated. This
evaluation was conducted on two corpora. One was created by Ela Oren and myself
with the purpose of evaluating the syntactic features of this parser, while the other was
provided by Anke Schultz covering the Cardiff Transitivity annotations. The chapter
describes evaluation settings and results for syntactic and semantic parsing. Chapter 11
concludes the thesis by providing a thesis summary overview, indications for practical
applications of the work and future directions to follow.





Chapter 2

An overview of selected work on
parsing with SFG

There have been various attempts to parse with SFGs and this chapter covers the most
significant attempts. The first attempt was made by Winograd (Winograd 1972) which
was more than a parser, it was an interactive natural language understanding system
for manipulating geometric objects in a virtual world.

Then, starting from early 1980s onwards, Kay, Kasper, O’Donnell and Bateman
tried to parse with the Nigel Grammar (Matthiessen 1985), a large and complex natural
language generation (NLG) grammar for English used in the Penman generation project.
Other attempts by O’Donoghue (1991b), Weerasinghe (1994), Souter (1996) and Day
(2007) aimed for corpus-based probability driven parsing within the framework of the
COMMUNAL project, starting from the late 1980s.

In a very different style, Honnibal (2004) and Honnibal & Curran (2007) constructed
a system to convert Penn Treebank structures into a corresponding SFGBank. This
managed to provide a good conversion from phrase structure trees into systemic
functional constituency trees covering sentence Mood and Theme structure. No
systemic feature selections were assigned to any of the constituents. Also no Transitivity
account was provided in their attempts. The current work follows a similar approach of
converting parse structures and, in addition, providing a set of feature selections from
system networks. The sections following provide more details on previous attempts to
parse with SFGs.
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2.1 Winograd’s SHRDLU
SHRDLU is an interactive program for understanding (if limited) natural language
written by Terry Winograd at MIT between 1968-1970. It supported a simple dialogue
about a world of geometric objects in a virtual world. The human could ask the system
to manipulate objects of different colours and shapes and ask questions about what
had been done or the new state of the world.

SHRDLU is recognised as a landmark in natural language understanding demon-
strating that a connection with artificial intelligence is possible. However, its success
was not due to the use of SFG syntax but rather to the small size of every system
component to achieve a fully functional dialogue system. Not only was it parsing the
input but it was developing an interpretation of it, reasoning about it and generating
appropriate natural language responses.

Winograd combined the parsing and interpretation processes such that the semantic
interpreter was actually guiding the parsing process. The knowledge of syntax was
encoded in the procedures of the interpretation program. He also implemented an
ingenious backtracking mechanism where the program does not simply go back, like
other parsers, to try the next possible combination choice but actually takes a decision
on what shall be tried next.

Having data embedded into the program procedures, as Winograd did, makes it
non-scalable for example in accommodation of larger grammars and knowledge bodies
and unmaintainable in the long term as it becomes increasingly difficult to make
changes (Weerasinghe 1994).

2.2 Kasper
Bob Kasper was involved in the Penman text generation project and in 1985 embarked
on the mission of testing if the Nigel grammar, then the largest available genera-
tion grammar, was suitable for natural language parsing. Familiar with Functional
Unification Grammar (FUG), a formalism developed by Kay and tested in parsing
(Kay 1985) which caught in popularity in computational linguistics regardless of Kay’s
dissatisfaction with results, Kasper decided to re-represent the Nigel grammar in FUG.

Faced with unacceptable computational complexity, Kasper (1988) decided to create
the phrase-structure of the sentences with hand-written rules which were mapped onto
a parallel systemic tree structure. Kasper was the first one to parse with a context-free
backbone (Kasper 1988). He first parsed each sentence with a Phrase Structure Gram-
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Fig. 2.1 Transformation from phrase structure into systemic constituency structure. Rule
example from O’Donnell & Bateman (2005).

mar (PSG), typical to Chomsky’s Generative Transformational Linguistics (Chomsky
1957). He created a set of rules for mapping the phrase structure (PS) into a parallel
systemic tree like the one depicted in Figure 2.1. When all possible systemic trees
were created they were further enriched using information from the Nigel grammar
(Matthiessen 1985).

Once the context-free phrase-structure was created using a bottom-up chart parser
it was further enriched from the FUG representation of the Nigel grammar. This
approach to parsing is called parsing with a context-free backbone as phrase-structure
is conveyed as simplistic skeletal analysis, fleshed out by the detail-rich systemic
functional grammar.

Even though Kasper’s system represents the first attempt to parse with a full
Hallidayan grammar, its usability is lowered, as O’Donnell & Bateman (2005) point
out, by the reliance on a hand built phrase structure grammar.

2.3 O’Donnell
Since 1990, Mick O’Donnell experimented with several parsers for small Systemic
grammars, but found difficulty when scaling up to larger grammars. While working
in the EDA project, funded by Fujitsu, he recompiled a subset of the Nigel grammar
into two resources: the set of possible function bundles allowed by the grammar (along
with the bundles of preselections) and a resource detailing which functions can follow
a particular function (O’Donnell 1993, 1994).

This parser was operating without a syntactic backbone directly from a reasonable
scale SFG. However when scaled to the whole Nigel grammar, the system became very
slow because of the sheer size of the grammar and the inherent complexity introduced by
multiple parallel classifications and functional combinations - a problem well described
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by Bateman (2008). Then O’Donnell wrote his own grammar of Mood that was more
suitable for the parsing process but less complex than the recompiled Nigel.

In 2001, while working in a Belgian company, O’Donnell came to the conclusion
that dependency grammars are very efficient for parsing. Together with two colleagues,
he developed a simplified systemic grammar where elements were connected through a
single function hence avoiding (functional) conflation. Also the ordering of elements
was specified relative to the head of phrase rather than relative to each other.

More recently, O’Donnell in the UAM Corpus Tool embedded a systemic chart
parser (O’Donnell 2005) with a reduced systemic formalism. He classifies his parser as
left to right and bottom up with a custom lexicon where verbs are attributed features
similar to Hallidayan process types and nouns receive a unique semantic category like
thing-noun, event-noun, location-noun etc.

Because of previously reported complexity problems with systemic grammars
(O’Donnell 1993), the grammatical formalism is reduced to a singular functional layer
of Mood-based syntactic structure (Subject, Predicate, Object etc.) ignoring the
Transitivity (Actor/Goal, Sensor/Phenomenon etc.) and Textual (Theme/Rheme)
analyses. O’Donnell removes conflation except for the verbal group system network.
He also employs a slot based ordering, where elements do not relate to each other but
rather to the group head, simplifying the number of rules and complexity.

O’Donnell (2005) does not provide a parser evaluation so its accuracy is still
unknown. The lexicon that was created is claimed to deal with word semantic classes
but is strongly syntactically based, assigning a single sense to nouns and verbs ignoring
language polysemy. Moreover the framework within which the semantic classes have
been generated is not very clear.

2.4 O’Donoghue
O’Donoghue proposes a corpus based approach to parsing using Vertical Strips
(O’Donoghue 1991b). Strips are defined as a vertical path of nodes in a parse tree
starting from the root down to the lexical items but not including those. He extracted
a set of vertical strips from a corpus called the Prototype Grammar Corpus together
with their frequencies and probability of occurrence. This approach differs from the
traditional one with respect to the kind of generalisation it concerned: specifically,
traditional approaches are oriented towards horizontal order while the vertical strip
approach is concerned with vertical order in the parse tree.
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To solve the order problem O’Donoghue uses a set of probabilistic collocation rules
extracted from the same corpus indicating which strips can follow a particular strip.
He also created a lexical resource indicating for each word which elements can expand
it.

The parsing procedure is a simple lookup of words in the lexical resource selecting
all possible elements that can expound by each word; and then selecting possible
strips starting with the elements expounded by each word. Advancing from left to
right, for each sentence word more strips compatible with the previously selected ones
are selected within the collocation network constraints. The parser finds all possible
combinations of strips composing parse trees representing possible output parses.

The corpus from which the vertical strips were extracted consists of 100,000 sentences
and was generated with Fawcett’s natural language generation system and was tested
on the same corpus leaving unclear how the parser would behave on a real corpus. In
98% of cases the parser returns a set of trees (between 0 and 56) that included the
correct one with an average of 6.6 trees per parse.

Actually, using a larger corpus could potentially lead to a combinatorial explosion
in the step that looks for vertical strips. It would then decrease the accuracy of the
parse because of the higher number of possible trees per parse.

2.5 Honnibal
Honnibal (2004; 2007) describes how the Penn Treebank can be converted into a SFG
Treebank. Before assigning to parse tree nodes syntactic features such as mood, tense,
voice and negation he first transforms the parse trees into a form that facilitates the
feature extraction.

The scope of the SFG corpus was limited to a few Mood and Textual systems leaving
aside Transitivity because of its inherently lexico-semantic nature. He briefly describes
how he structurally deals with verb groups, complexes and ellipses as functional
structures that are much flatter than those exhibited in the original Treebank. Then
he describes how some of the MOOD systemic features (such as mood type, clause
status, polarity, tense, voice etc.) are identified.

The drawback of this approach is that the Python script performing the transforma-
tion does not derive any grammar but rather implements directly these transformations
as functions and so falls into the same class of problems as Winograd’s SHRDLU.
By doing so the program is non-scalable for accommodation of larger grammars and
knowledge bodies as the complexity and the size of the program would grow significantly
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as well. This is unmaintainable in the long term as making changes would becomes
increasingly difficult.

2.6 Summary
In this chapter several relevant attempts to parse with Systemic Functional Grammars
were presented. All of them needed to reduce the grammar size or use toy grammars in
order to compute results in a reasonable amount of time. The main problem in using
SFGs for parsing is that they are much more complex than post-Chomskian grammars:
the grammar contains both paradigmatic and syntagmatic aspects of language, the
system networks represent large numbers of simultaneous combinations of features, and
multiple layers of function structure are conflated together. The issue of complexity is
described in (Bateman 2008). Some parsing approaches use a syntactic backbone which
is then fleshed out with SFG descriptions. Others use a reduced set or a single layer of
SFG representation or an annotated corpus as the source of a probabilistic grammar.
Regardless of approach, each limits the SFG in one way or another, balancing the
depth of description with language coverage: that is either deep description but a
domain specific language or shallow description but broad language coverage.

The current approach is aligned with the works of Honnibal, Kasper and O’Donnell
with respect to using a backbone structure and enriching it with syntactic and semantic
features. The current method employs rules for graph traversal in order to build a
parallel backbone constituency tree and rules for graph matching to enrich it with
systemic features.

Parsing with the Transitivity system is a task similar to Semantic Role Labelling
and requires a large lexico-grammatical resource describing verb meanings in terms
of their process type and participant roles, which were introduced in Sections 1.5
and 1.7.3. O’Donnell approaches this by providing possible process types directly for
the verb by employing a self constructed lexicon where each word has syntactic and
semantic features. The current approach uses the PTDB (Neale 2002), which provides
entire process configurations (semantic frames) for each verb sense and the feature
assignment is simultaneous, if matched, to the entire configuration of process and its
participants. One major advantage, as compared to Honnibal’s approach is that the
grammar and the program are carefully disconnected so that the code is maintainable
and scalable with respect to the size of the grammar.

The next chapter will introduce the structure of Systemic Functional Grammars
and draw some parallels between the Sydney and Cardiff schools.



Chapter 3

Systemic functional theory of
grammar

Any description of language requires a theory that provides the frame, scope and
concepts necessary. Having a solid theory of grammar contributes to explaining what
language is and how it works. It also frames how language ought to be analysed by
either human or machines.

In his seminal paper Halliday (1961), Halliday addresses the ardent need of the
time for a general theory of language and partially answers the proposal for a universal
theory of language. He sets out what was known at the time as Scale and Category
Grammar. In such a model units are set up to account for pieces of language which
carry grammatical patterns. They are seen as arranged on a hierarchical rank scale of
words, groups and clauses. These and other foundational concepts are covered in the
first part of this chapter.

There are two variants of Systemic Functional Grammars: the Sydney Grammar
started in 1961 by Halliday (2002) and the Cardiff Grammar proposed by Fawcett
(2008), which is a simplification and an extension of the Sydney Grammar. To
understand the underlying common motives and how they are different we shall start
by looking at their theories of grammar. They also have quite different historical
developments.

The Sydney and Cardiff grammars have been formalised to the point where they
could be computationally applied to natural language generation. They have been
implemented in the PENMAN (Mann 1983; Penman Project 1989a) and COMMUNAL
(Fawcett 1990) projects respectively. While the Cardiff style grammar has been primarily
used for for English, the Sydney style grammar has been implemented for over twelve
languages in the KPML text generation system (Bateman 1996a,b, 1997). The major
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component of PENMAN is a computer model of Halliday’s SF grammar described
by Mann & Matthiessen (1983), Matthiessen & Bateman (1991), Matthiessen (1995)
and others. COMMUNAL is the computer implementation of the Cardiff grammar
described by Fawcett (1988a), Fawcett (1993) and others.

This chapter first sets out the basic organisational dimensions for each of the
theories and then discusses comparatively Halliday’s (Halliday 2002) and Fawcett’s
(Fawcett 2000) versions of SFL.

3.1 A word on wording
Before going into deeper discussion, I first make terminological clarifications on the
terms: grammar, grammatics, syntax, semantics and lexico-grammar. I start with
definitions adopted in “mainstream” generative linguistics and then present how the
same terms are discussed in systemic functional linguistics.

Radford, a generative linguist, in the “Minimalist Introduction to Syntax” (1997),
starts with a description of grammar as a field of study, which, in his words, is
traditionally subdivided into two inter-related areas of study: syntax and morphology.

Definition 3.1.1 (Morphology (Radford)). Morphology is the study of how words
are formed out of smaller units (traditionally called morphemes) (Radford 1997: 1).

Definition 3.1.2 (Syntax (Radford)). Syntax is the study of how words can be
combined together to form phrases and sentences. (Radford 1997: 1)

Halliday, in the context of the rank scale discussion (see Definition 3.2.1 and 3.2.2),
refers to the traditional meaning of syntax as the grammar above the word and to
morphology as grammar below the word (Halliday 2002: 51). Such a distinction, he
states, has no theoretical status and is deemed as unnecessary. Halliday adopts this
position to motivate the architecture of grammar he was developing, inherited from his
precursor, Firth. As he puts it:

. . . the distinction between morphology and syntax is no longer useful or
convenient in descriptive linguistics. (Firth 1957: 14)

Radford adds that, traditionally, grammar is not only concerned with the principles
governing formation of words, phrases and sentences but also with principles governing
their interpretation. Therefore structural aspects of meaning are said to be also a part
of grammar.
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Definition 3.1.3 (Grammar (Radford)). [Grammar is] the study of the principles
which govern the formation and interpretation of words, phrases and sentences. (Rad-
ford 1997: 1)

Interestingly Definition 3.1.3 makes no mention at all to the lexicon. This is because
the formal grammars focus primarily on unit classes and how they are accommodated
in various structures and so in early formal linguistics the lexicon was often discon-
nected from the grammar. Systemic grammar, on the other hand, along with formal
descriptions of grammatical categories and structures, includes the lexicon as part of
grammar to form a lexico-grammar as has been done in Lexical Functional Grammar
(LFG), Head Phrase Structure Grammar (HPSG), Combinatory Categorial Grammar
(CCG) and others.

Another important aspect to notice is that the grammar may be defined as a field
of study rather than a set of rules. The divergence in perspective on the subject led
Halliday, since his early papers, to emphasise the difference between a study of a
phenomenon with the phenomenon itself. By analogy to language as phenomenon
and linguistics as the study of the phenomenon, discussed in (Halliday 1997), Halliday
adopts the same wording for grammar as phenomenon and grammatics as the study of
grammar; the same distinction holds for syntax and syntactics in semiotics.

Definition 3.1.4 (Grammatics (Halliday)). Grammatics is a theory for explaining
grammar (Halliday 2002: 369)

Moravcsik, another generative linguist, stresses the same distinction in her “An
introduction to syntax” (Moravcsik 2006), and presents two ways in which the word
syntax is used in the literature: (a) in reference to a particular aspect of grammatical
structure and (b) in reference to a sub-field of descriptive linguistics that describes this
aspect of grammar. In her words:

. . . syntax describes the selection and order of words that make well-formed
sentences and it does so in as general a manner as possible so as to bring
out similarities among different sentences of the same language and different
languages and render them explainable. . . . syntax rules also need to account
for the relationship between strings of word meanings and the entire sentence
meaning, on one hand, and relationships between strings of word forms and
the entire sentential phonetic form, on the other hand. (Moravcsik 2006:
25)
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In her definition of grammar she includes the lexicon and semantics which is a
somewhat more explicit statement than Radford’s interpretation. She is also getting,
in Definition 3.1.5, somewhat closer to what grammar stands for in SFL - Definition
3.1.6.

Definition 3.1.5 (Grammar (Moravcsik)). ... maximally general analytic descrip-
tions, provided by descriptive linguistics, [are] called grammars. A grammar has
five components: phonology (or, depending on the medium, its correspondent e.g.
morphology), lexicon, syntax and semantics (Moravcsik 2006: 24–25).

Definition 3.1.6 (Grammar (Halliday)). To Halliday, lexico-grammar, or for short,
simply grammar, is a part of language and it means the wording system – the “lexical-
grammatical stratum of natural language as traditionally understood, comprising
its syntax, vocabulary together with any morphology the language may display [...]”
(Halliday 2002: 369).

The last point I want to mention is the approach to semantics. Formal grammars
aim to account for the realisation variations, that is formation of words, phrases and
sentences along with their arrangements, and mention of semantics is often restricted
to what may be termed the formal aspect of meaning.

By contrast, a systemic grammar is a functional grammar, which means (among
other things) that it is considered semantically motivated, i.e. “natural”. So the
fundamental distinction between formal and functional grammars is the semantic basis
for explanations of structure.

Also, in SFL, the meaning is approached from a semiotic perspective, placing
the linguistic semantics in perspective with the linguistic expression and the real
world situation. In this respect, Lemke (1993) offers a well formulated theoretical
foundation that “human communities are eco-social systems that persist in time through
ongoing exchange with their environment; and the same holds true for any of their
sub-subsystems [...]” including language. The social practices constituting such systems
are both material and semiotic, with a constant dynamic interplay between the two
(Halliday 2002: 387).

To Halliday, the term semiotic accounts for an orientation towards meaning rather
than sign. In other words, the interaction is between the practice of doing and the
practice of meaning. As the two sets of practices are strongly coupled, Lemke points
out that there is a high degree of redundancy in the material–semiotic interplay. This
resonates perfectly with Firth’s idea of mutual expectancy between the text and the
situation. The idea of interplay is incorporated in SFL as language stratification
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(Taverniers 2011) and is graphically represented in Figure 3.1. The axis stratification is
a useful dimension for relating formal grammars and the systemic functional grammars.

Stratification

Phonology
(sounding)

Lexico-grammar
(wording)

Semantics
(meaning) Expression

Content

Fig. 3.1 The levels of abstraction along the realisation axis

The SFL model defines language as a resource organised into three strata: phonology
(sounding), lexico-grammar (wording) and semantics (meaning). Each is defined
according to its level of abstraction on the realisation axis. The realisation axis is
divided into two planes: the expression and the content planes. Although debate about
the precise division continues, for current purposes it is sufficient to see the first stratum
(i.e. phonology) belongs to the expression plane and the last two (lexico-grammar and
semantics) belong to the content plane. In this context, the formal grammar could
be localised mostly within the expression plane, including the phonology/morphology,
syntax, lexicon while formal semantics belongs mostly in the content plane.

3.2 Sydney theory of grammar
I start introducing the terms of SFL theory with the Sydney grammar as this is in
accordance with the historical development originating with Halliday (2002) defining
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the categories of the theory of grammar. He proposes four fundamental categories:
unit, structure, class and system. Each of these categories is logically derivable from
and related to the other ones in a way that they mutually define each other. These
categories relate to each other on three scales of abstraction: rank, exponence, delicacy.
Halliday also uses three scale types: hierarchy, taxonomy and cline.

Definition 3.2.1 (Hierarchy). Hierarchy [is] a system of terms related along a single
dimension which involves some sort of logical precedence. (Halliday 2002: 42).

Definition 3.2.2 (Taxonomy). Taxonomy [is] a type of hierarchy with two charac-
teristics:

1. the relation between terms and the immediately following and preceding one is
constant

2. the degree is significant and is defined by the place in the order of a term relative
to following and preceding terms. (Halliday 2002: 42)

Definition 3.2.3 (Cline). Cline [is] a hierarchy that instead of being made of a
number of discrete terms, is a continuum carrying potentially infinite gradations.
(Halliday 2002: 42).

The concept of cline may not necessarily originate in SFL but it is used quite
extensively in the SFL literature. Next I define and introduce each category of
grammatics and the related concepts that constitute the theoretical foundation for the
Sydney Theory of grammar.

3.2.1 Unit

Language is a patterned activity of meaningful organisation. The patterned organisation
of substance (graphic or phonic) along a linear progression is called syntagmatic order
(or simply order).

Definition 3.2.4 (Unit). The unit is a grammatical category that accounts for the
stretches that carry grammatical patterns (Halliday 2002: 42). The units carry a
fundamental class distinction and should be fully identifiable in description (Halliday
2002: 45).

Generalisation 3.2.1 (Constituency principles). The five principles of constituency
in lexico-grammar are:
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1. There is a scale or rank in the grammar of every language. That of English
(typical of many) can be represented as: clause, group/phrase, word, morpheme.

2. Each unit consists of one or more units of rank next below.

3. Units of every rank may form complexes.

4. There is potential for rank shift, whereby a unit of one rank my be down-ranked
to function in a structure of a unit of its own rank or of a ranks below.

5. Under certain circumstances it is possible for one unit to be enclosed within
another, not as a constituent but simply in such a way as to split the other into
two discrete parts (Halliday & Matthiessen 2013b: 9–10).

For example, down-ranking (Point 4) can be observed in nominal groups that
incorporate a relative clause functioning as qualifier. In example 10 that I got for
Christmas is a relative clause specifying which books are being referred to. The unit split
(Point 5) can be encountered in the instances of Wh-interrogative clauses containing
a preposition at the end which in fact belongs to the Wh-group. In Example 11 the
prepositional phrase Who . . . about is gapped and has an inverted order of constituents.

(10) I haven’t read any books that I got for Christmas.

(11) Who are you talking about?

(12) I am talking about George.

One of the principal relations between units, in SFL, is that of consistency for
which we say that a unit consists of other units. The scale on which the units are
ranged is the rank scale. The rank scale is a levelling system of units supporting unit
composition regulating how units are organised at different granularity levels from
clause, to groups/phrases to words. The units of a higher rank scale consist of units of
the rank next below. Table 3.1 presents a schematic representation of the rank scale
and its derived complexes.

Generalisation 3.2.2 (Rank scale constraints). The rank relations are constrained
as follows:

1. in general elements of clauses are filled by groups, the elements of groups by
words and the elements of words by morphemes,

2. downward rankshift is allowed, i.e. the transfer of a given unit to a lower rank,
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Rank scale ↓ Complexing
Clause complex

Clause
Group(/phrase) complex

Group(/phrase)
Word complex

Word
(Morpheme complex)

(Morpheme)
Table 3.1 Rank scale of the (English) lexico-grammatical constituency

3. upward rankshift is not allowed,

4. only whole units can enter into higher units (Halliday 2002: 44).

Generalisation 3.2.2 taken as a whole means that a unit can include, in what it
consists of, a unit of rank higher than or equal to itself but not a unit of rank more
than one degree lower than itself; and not in any case a part of any unit (Halliday
2002: 42).

Following the rank scale constraints above, the concept of embedding can be defined
as follows.

Definition 3.2.5 (Embedding). Embedding is the mechanism whereby a clause or
phrase comes to function as a constituent within the structure of a group, which is
itself a constituent of a clause (Halliday & Matthiessen 2013b: 242).

Halliday states that embedding is a phenomena that occurs only when a
phrase/group or clause functions within the structure of another group or clause
(Halliday 1994: 242). The above definition of embedding only permits clauses and
groups to function as elements of other groups which means that a clause cannot fill
the elements of another clause (Fawcett 2000: 237). The latter phenomena is described
in terms of clause complex where taxis relations (Definition 3.2.14) come into play.

3.2.2 Structure

Definition 3.2.6 (Structure). The structure (of a given unit) is the arrangement of
elements that take places distinguished by the order relationship (Halliday 2002: 46).
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Definition 3.2.7 (Element). Element is defined by the place stated as absolute or
relative position in sequence and with reference to the unit next below (Halliday 2002:
47).

Unit

place3place2place1 place4 place5

functional
element3

functional
element2

functional
element1

functional
element4

functional
element5

order order order order

Fig. 3.2 The graphic representation of (unit) structure

We say that a unit is composed of elements located in places and that its internal
structure is accounted for by elements in terms of functions and places taken by the
lower (constituting) units or lexical items. The graphic representation of the unit
structure is depicted in Figure 3.2. The unit structure is referred to in linguistic
terminology as constituency (whose principles are enumerated in Generalisation 3.2.1).
In the unit structure, the elements resemble an array of empty slots that are filled by
other units or lexical items.

For example to account for the English clause structure four elements are needed:
subject, predicator, complement and adjunct. They yield the distinct symbols, S, P,
C, A as the inventory of elements. They then can be arranged in various orders
falling in particular places, say SPC, SAPA, ASPCC etc. The places of elements are
important with respect to the structure of the whole unit but also with respect to the
relative ordering between these elements. In English, for example, S fronts P in non
interrogative clauses, C is fronted by P unless the clause realises a Wh-interrogative
whereas A is quite free and can occur anywhere in the unit structure.

3.2.3 Class

To each place in the structure there corresponds one occurrence of the unit next below.
This means that there will be a certain grouping of members identified by the functional
element they take in the structure. The patterning of such groupings leads to the
emergence of classes of units.

In the clause structure example, elements in the unit are occupied by units of lower
rank and of a particular class. The relation between the element and the class is
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mutually determined. In each of these elements a lower rank unit is placed, whose
class is constrained to a few possibilities accepted by the element. For instance, the S
element can be filled by a noun, nominal group, pronoun or another clause that will be
a down-ranking situation (as defined above). No other unit types are allowed.

Definition 3.2.8 (Class). The class is that grouping of members of a given unit
which is defined by the functional element in the structure of the unit next above
(Halliday 2002: 49).

Halliday defines class (Definition 3.2.8) as likelihood of the same rank phenomena
to occur together in the structure. He adopts a top-down approach stating that the
class of a unit is determined by the function (Definition 3.2.13) it plays in the unit
above and not by its internal structure of elements. In SFG the structure of each
class is well accounted for in terms of syntactic variation recognising six unit classes:
clause, nominal, verbal, adverbial and conjunction groups and prepositional phrase.
The Sydney unit structure model is briefly summarised in Appendix A.

Halliday identifies the concept of grammatical metaphor defined in Definition 3.2.9
and it plays an important role in the Sydney model of grammar as a whole for accounting
for the versatility of natural language. It is typically found in adult language where
one type of unit may be expressed with the grammar of another.

Definition 3.2.9 (Grammatical metaphor). Grammatical metaphor involves the
substitution of one grammatical class or structure for another, often resulting in a
more compressed expression.

(13) The fifth day saw them at the summit.

(14) On the fifth day they arrived at the summit.

(15) Guarantee limited to refund of purchase price of goods.

(16) We guarantee only to refund the price for which the goods were purchased.

Examples 13 and 15 are instances of grammatical metaphor whereas Examples
14 and 16 are their non metaphorical counterparts. In Examples 13 and 14 the
temporal circumstance of an action expressed through a prepositional phrase becomes
the nominal agent of a perception process. Children’s speech is largely free of such
kind of metaphors; in fact this is the main distinctions between the two (Halliday &
Matthiessen 2013b).
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3.2.4 System

As described above, structure is a syntagmatic ordering in language capturing regulari-
ties and patterns which can be paraphrased as what goes together with what. However
in SFG most of the descriptive work is carried not syntagmatically but paradigmati-
cally via system networks (Definition 3.2.10) describing what could go instead of what
(Halliday & Matthiessen 2013b: 22). The paradigmatic-syntagmatic axes date back to
the works of Saussure (1959 [1915]) and both are important for completing a linguistic
description. Here lies one of the main differences between SFL and other approaches:
SFL takes the paradigmatic path whereas many others take the syntagmatic path to
language, representing it as an inventory of structures. The structure of course is a
part of language description but it is only a syntagmatic manifestation of the systemic
choices and SFL holds that one needs to account for both (Halliday & Matthiessen
2013b: 23).

Definition 3.2.10 (System). A system is a mutually exclusive set of terms referring
to meaning potentials in language and are mutually defining. A system is considered
self-contained, closed and complete and has the following characteristics:

1. the number of terms is finite,

2. each term is exclusive of all others,

3. if a new term were added to the system it would change the meaning of all the
other terms (Halliday 2002: 41).

The concept of a system as presented in Definition 3.2.10 has its roots in the works
of Saussure (1959 [1915]) and Hjelmslev (1953). Halliday generalises the concept and
cements it into the SFL architecture of grammar.

Going back to the notion of class previously defined as a grouping of items identified
by functions in the structure, it must be stressed that class is not a list of formal items
but an abstraction from them. By an increase in delicacy, a class is then broken into
secondary classes.

Definition 3.2.11 (Delicacy). Delicacy is the scale of differentiation or depth of
detail whose limit at one end is the primary degree of categories of structure and class
and on the other end, theoretically, is the point beyond which no further grammatical
relations obtain (Halliday 2002: 58).

The terms forming system networks refer to abstract categories. We say that a
category is refined into more subtle distinctions or subcategories which form a system as
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defined above. Subsequently those distinctions of subcategories can be further refined
in other systems. This relationship between two systems is one of delicacy where the
second one is more delicate than the first and together they form a system network.

The graphical notations introduced by Halliday & Matthiessen (2013b) are useful
in reading and writing system networks in this thesis. Figure 3.3 is a system network
with a simple entry condition, a system network grouping that shares the same entry
condition is show in in Figure 3.4: a system network with a disjunctive and conjunctive
entry conditions is show in Figures 3.5 and 3.6.

a
x

y

Fig. 3.3 A system with a single entry condition: if a then either x or y

a

x

y

p

q

Fig. 3.4 Two systems grouped under the same entry condition: if a then both either x or y
and, independently, either p or q

a

c

x

y

Fig. 3.5 A system network with a disjunctive entry condition: if either a or c (or both), then
either x or y

a

b

x

y

Fig. 3.6 A system with a conjunctive entry condition: if both a and b then, either x or y

It is worth noting that when a piece of language is analysed, it can be approached
at various levels of delicacy. We say that delicacy is variable in description, and
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one may choose to provide coarse-grained analysis without going beyond primary
grammatical categories or one can dive into fine grained categorial distinctions, still
being comprehensive with regards to the rank, exponence and grammatical categories.

Definition 3.2.12 (Exponence). Exponence is the scale which relates the categories
of theory with a high degree of abstraction to formal items on a low degree of abstraction.
Each exponent can be linked directly to the formal item or by taking successive steps
on the exponence scale and changing rank where necessary Halliday (2002: 57).

3.2.5 Functions and metafunction

Above, when talking about structure, I described a unit as being composed of elements
accounted for in terms of functions and places taken by the lower (constituting) units
or lexical items.

Definition 3.2.13 (Function). The functional categories or functions provide an
interpretation of grammatical structure in terms of the overall meaning potential of
the language (Halliday & Matthiessen 2013b: 76).

Most constituents of clause structure, however, have more than one function, which
is called a conflation of elements. For example in the sentence “Bill gave Dolly a rose”,
“Bill” is the Actor doing the act of giving but also the Subject of the sentence. So we
say that Actor and Subject functions are conflated in the constituent “Bill”. This is
where the concept of metafunction or strand of meaning comes most prominently into
the picture. The Subject function is said to belong to the interpersonal metafunction,
while the Actor function belongs to the experiential metafunction.

Metafunction Definition(kind
of meaning)

Corresponding
status in clause

Favored type of
structure

experiential construing a
model of
experience

clause as
representation

segmental (based
on constituency)

interpresonal enacting social
relationship

clause as exchange prosodic

textual creating relevance
to context

clause as message culminative

logical constructing
logical relations

complexes (taxis &
logico-semantic type)

iterative

Table 3.2 Metafunctions and their reflexes in the grammar



52 Systemic functional theory of grammar

Halliday identifies three fundamental dimensions of structure in the clause: experi-
ential, interpersonal and textual. He refers to them as metafunctions and they account
for the functions that language units take on in communication. Table 3.2 presents the
metafunctions and their reflexes in grammar as proposed by Halliday & Matthiessen
(2013b: 85).

Across the rank scale, with respect to structure and metafunctions, Halliday
formulates the general principle of exhaustiveness (Generalisation 3.2.3) saying that
clause constituents have at least one and may have multiple functions in different
strands of meaning; however this does not mean that it must have a function in all of
them. For example interpersonal Adjuncts such as “perhaps” or textual Adjuncts such
as “however” play no role in the clause as representation.

Generalisation 3.2.3 (Exhaustiveness principle). Everything in the wording has
some function at every rank but not everything has a function in every dimension of
structure (Halliday 2002; Halliday & Matthiessen 2013b).

This principle implicitly relates to the property of language meaning that there is
nothing meaningless and thus every piece of language must be explained and accounted
for in the lexico-grammar. Also this principle implies that each metafunction has its
own structure or that text is analysed through a multi-structural approach.

At the very top of the rank scale, clauses may form complex structures. Halliday
employs systematically the concepts of taxis and logico-semantic relations to describe
inter-clausal relations.

Definition 3.2.14 (Taxis). Taxis represents the degree of inter-dependency between
units systematically arranged in a linear sequence where parataxis means equal and
hypotaxis means unequal status of units forming a nexus or a unit complex together
(Halliday & Matthiessen 2013a: 440).

The concept of taxis is very useful for describing unit relations not only at the
group and clause ranks but all the way down to the smallest linguistic units such as
morphemes and phonemes. I will also refer to it when describing the Cardiff theory of
grammar and also briefly in the discussion of dependency relations in Section 5.6.

The elements of logical paratactic structure are notated left to right (1,2,. . . ) while
those of hypotactic structure with Greek letters (. . . ,β,α) in the same order or right
to left depending on the position of the dominant element. The tactic relations can
be of two types: that of expansion which relates phenomena of the same order of
experience and that of projection which relates phenomena of one order of experience
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(usually saying or thinking) to an order of experience higher (what is said or thought).
Projection can be of two types: idea (’ single quote) and locution ( “ double quotes).

Expansion is further divided into three subcategories: elaborating (= equals),
extending (+ is added to) and enhancing (× is multiplied by). Elaboration is a way to
restate the same thing, exemplify, comment or specify in detail. Extending is the way
to add new elements to give an exception or offer an alternative. And finally enhancing
is the way to qualify something with some circumstantial feature of time, place, cause,
intensity or condition.

3.2.6 Lexis and lexico-grammar

In SFL the terms word and lexical item are not really synonymous. They are related
but they refer to different things. The term word is reserved (in early Halliday) for the
grammatical unit of the lowest rank whose exponents are lexical items.

Definition 3.2.15 (Lexical Item). In English, a lexical item may be a morpheme,
word (in traditional sense) or group (of words) and it is assigned to no rank (Halliday
2002: 60).

Examples of lexical items are the following: “’s” (the possessive morpheme), “house”,
“walk”, “on” (words in traditional sense) and “in front of”, “according to”, “ask around”,
“add up to”, “break down” (multi-word prepositions and phrasal verbs).

Although some theories treat grammar and lexis as discrete phenomena, Halliday
brings them together as opposite poles of the same cline. He refers to this merge as
lexico-grammar where they are paradigmatically related through the delicacy relation.
Hasan (2014) explores the feasibility of what it would mean to turn the “whole linguistic
form into grammar”. This then implies an assumption that lexis is not form and that
its relation to semantics is unique, which in turn challenges the problems of polysemy.

3.3 Cardiff theory of grammar
As presented in the introduction and explained by Bateman (2008), the accounts along
the syntagmatic axis had received little attention so far in the Sydney grammar leaving
unresolved how to best represent the structure of language at the level of form with
the level of detail needed for computational work. This section presents the theory of
systemic functional grammar as conceived by Robin Fawcett at the University of Cardiff.
His book “A theory of syntax for Systemic Functional Linguistics” (Fawcett 2000)
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presented a proposal for a unified syntactic model for SFL that contrasts with several
aspects of Hallidayan grammar but shares the same set of fundamental assumptions
about language; it is an extension and a simplification in a way.

Fawcett questions the status of multiple structures in the theory and whether
they can finally be integrated into a simpler sole representation. A big difference to
Hallidayan theory is renouncing the concept of the rank scale and this has an impact on
the whole theory. Another is the bottom-up approach to unit definition as opposed to
the top-down one advocated by Halliday. It also appears that the bottom-up approach
is more favourable for the parsing task while the top-down suits perfectly the language
generation task. These two and a few other differences have important implications
for the overall theory of grammar and consequently for the grammar itself. As a
consequence, to accommodate the lack of a rank-scale, Fawcett adapts the definitions
of the fundamental concepts and changes his choice of words (for example “class” and
“unit” turn into “class of unit” treated as one concept rather than two distinct ones).

Fawcett (2000) proposes three fundamental categories in the theory of grammar:
class of unit, element of structure and item. Constituency is a relation accounting for
the prominent compositional dimension of language. However a unit does not function
directly as a constituent of another unit but via a specialised relation which Fawcett
breaks down into three sub-relations: componence, filling and exponence. Informally
it is said that a unit is composed of elements which are either filled by another unit
or expounded by an item. He also proposes three secondary relations of coordination,
embedding and reiteration to account for a more complete range of syntactic phenomena.

3.3.1 Class of units

Fawcett’s theory of language assumes a model with two levels of meaning and form
corresponding to semantic units and syntactic units which are mutually determined
(which is the case for any sign in a Saussurean approach to language).

Definition 3.3.1 (Class of Unit). The class of unit [...] expresses a specific array of
meanings that are associated with each one of the major classes of entity in semantics
[...and] are to be identified by the elements of their internal structure (Fawcett 2000:
195).

For English Fawcett proposes four main kinds of semantic entities: situations, things,
qualities (of both situations and things) and quantities. Each of these semantic units
corresponds to five major classes of syntactic units: clause, nominal group, prepositional
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group, quality group and quantity group. In addition he recognises two more minor
classes: the genitive cluster and the proper name cluster (Fawcett 2000: 193–194).

Fawcett’s classification is based on the idea that the syntactic and semantic units
are mutually determined and supported by grammatical patterns. However those
patterns lie beyond the syntactic variations of the grammar and so blend into lexical
semantics.

In the Sydney theory the class is determined by the function it plays in the unit
above. By contrast, in Cardiff theory, the class of unit is determined based on its
internal structure i.e. by its elements of structure (and not by the function it plays in
the parent unit).

3.3.2 Element of structure

The terms element and structure have roughly the same meaning as defined in the
Sydney theory of grammar (defined in Section 3.2) but with two additional stipulations
presented below.

Definition 3.3.2 (Element of Structure). Elements of structure are immediate com-
ponents of classes of units and are defined in terms of their function in expressing
meaning and not in terms of their absolute or relative position in the unit. (Fawcett
2000: 213–214).

Following the definition above two important properties of elements are formulated
as follows.

Generalisation 3.3.1 (Element functional uniqueness). Every element in a given
class of unit serves a function in that unit different from the function of the sibling
elements (Fawcett 2000: 214).

Even if for example, different types of modifiers in English nominal group seem to
have very slight differences in functions, they are still there.

Generalisation 3.3.2 (Element descriptive uniqueness). Every element in every
class of unit will be different from every element in every other class of unit (Fawcett
2000: 214).

Thus the terms of modifier and head shall not be used for more than one class of
unit. In English grammar the head and modifier are used for nominal group only. And
in other groups the elements of structure may seem similar to modifier and head, they
still receive different names such as apex and temperer in the quality group. From the
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Sydney school perspective, this may be seen as a loss of syntagmatic generalisation
but the extent to which it applies is limited to few unit classes.

The elements (of structure) are functional slots which define the internal structure
of a unit but still they are located in places. One more category that intervenes between
element and unit is the concept of place which become essential for the generative
versions of the grammar.

There are two ways to approach place definition. The first is to treat places as
positions of elements relative to each other (usually previous). This leads to the need
for an anchor or a pivotal element which may not always be present/realised.

The second is to treat places as a linear sequence of locations at which elements
may be located, identified by numbers “place 1”, “place 2” etc. This place assignment
approach is absolute within the unit structure and makes elements independent of each
other. This approach was used in the COMMUNAL (Fawcett 1990) project and the
relative order of elements is employed in the PENMAN (Mann 1983) project.

3.3.3 Item

Definition 3.3.3 (Item). The item is a lexical manifestation of meaning outside
syntax corresponding to both words (in the traditional sense), morphemes and either
intonation or punctuation (depending whether the text is spoken or written). (Fawcett
2000: 226–232).

Items correspond to the leaves of syntactic trees and constitute the raw phonetic or
graphic manifestation of language. The collection of items of a language is generally
referred to as lexis.

Since items and units are of different natures, the relationship between an element
and a (lexical) item must be different from that to a unit. We say that items expound
elements and not that they fill elements as units do.

Definition 3.3.4 (Exponence (restricted)). Exponence is the relation by which an
element of structure is realised by a (lexical) item (Fawcett 2000: 254).

Whereas in the Sydney model exponence (Definition 3.2.12) is a relation that links
abstract grammatical category to the data, in the Cardiff model it has a restricted
meaning referring to a relation between items and elements only.
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3.3.4 Componence and obscured dependency

Definition 3.3.5 (Componence). Componence is the part-whole relationship between
a unit and the elements it is composed of (Fawcett 2000: 244).

Note that componence is not a relationship between a unit and its places; the latter,
as discussed in Section 3.3.2, simply relates locationally elements of a unit to each
other.

Componence intuitively implies a part-whole constituency relationship between the
unit and its elements. But this is not the only view. Another perspective is the concept
of dependency (which I will address in Chapter 5) or strictly speaking the sister or
sibling dependency (not parent-child). It is suitable for describing relations between
elements of structure within a unit.

(17) the man with a stick

For example the componence of the nominal group in Example 17, according to the
Cardiff grammar, is (dd h q), which are symbols for (determiner head qualifier). The
same can be expressed in terms of sibling dependency relations as depicted in Figure
3.7. The relations from stick to with a are not depicted because they belong in the
description of the prepositional group with a stick.

(the man ( with a stick ))

ROOT

dd q

Fig. 3.7 Sibling dependency representation for “the man with a stick”

In both SFL theories, sister dependency relations are considered a by-product or
second-order concept that can be deduced from the constituency structure and so is
unnecessary in the grammar model. I will come back to this point because the current
work relies on this dual view on elements of structure and relation to the whole unit.

The (supposed) dependency relation between a modifier and the head in the
framework of SFG is not a direct one. The simple assumption is that the modifier
modifies the head. Here, however, the general function of the modifiers is to contribute
to the meaning of the whole unit which is anchored by the head.

In the nominal group from Example 17, the determiner and qualifier are modifiers
that contribute to the description of the referent stated by the head. So the head
realises one type of meaning that relates the referent while the modifier realises another
one. Both of them describe the referent via different kinds of meaning; therefore,
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according to Fawcett, they are related indirectly to each other because the modifier
does not modify the head but the referent denoted by the head. From this point of
view, whether the element is dependent on a sibling element such as the head or on
the parent unit is beside the point because in syntax we can observe its realisation in
system networks (Fawcett 2000: 216–217). Next I move towards one last concept in
Cardiff model, filling, which is a relation between the elements of structure and the
units below.

3.3.5 Filling and the role of probabilities

Definition 3.3.6 (Filling). Filling is the probabilistic relationship between an element
and the unit lower in the tree that operates at that element (Fawcett 2000: 238, 251).

Fawcett replaces the rank scale with the concept of filling probabilities. The
probabilistic predictions are made in terms of a filling relationship between a unit and
an element of structure in a higher unit in the tree rather than being a relationship
between units of different ranks. This moves the focus away from the fact that a unit
is for example a group, and towards what group class it is.

In this line of thought, some elements of a clause are frequently filled by groups,
but some other elements are rather expounded by items. The frequency varies greatly
and is an important factor for predicting or recognising either the unit class or the
element type in the filling relationship.

Filling may add a single unit to the element of structure or it can introduce multiple
coordinated units. Coordination (Example 18) is usually marked by an overt Linker
such as and, or, but, etc. and sometimes is enforced by another linker that introduces
the first unit such as both.

Definition 3.3.7 (Coordination). Coordination is the relation between units that
fill the same element of structure (Fawcett 2000: 263).

(18) she is (friendly, nice and polite)

(19) she is (very very) nice!

Coordination is thought of by Fawcett as being not between syntactic units but
between mental referents. It always introduces more than one unit which are syntac-
tically and semantically similar (somehow) resulting in a syntactic parallelism which
often leads to ellipsis.



3.3 Cardiff theory of grammar 59

Definition 3.3.8 (Reiteration). Reiteration is the relation between successive oc-
currences of the same item expounding the same element of structure (Fawcett 2000:
271).

Reiteration (see Example 19) is often used to create the effect of emphasis. Like
coordination, reiteration is a relation between entities that fill the same element of the
unit structure, which I discuss further in Section 3.4.6 because it appears problematic.

Filling also makes possible the embedding relation which Fawcett treats as a general
principle in contrast to the more specific Definition 3.2.5 from the Sydney model.

Definition 3.3.9 (Embedding (generic)). Embedding is the relation that occurs
when a unit fills (directly or indirectly) an element of the same class of units; that
is when a unit of the same class occurs (immediately) above it in the tree structure
(Fawcett 2000: 264).

(20) (To become an opera singer) takes years of training.

(21) The girl (whom he is talking to) is an opera singer.

In Example 20 we can see an occurrence of direct embedding where a non-finite
clause acts as the subject of another clause. In Example 21 the embedding is indirect
as the relative clause is part of the nominal group which functions as the subject in
the parent clause. In both cases we say that a lower clause is embedded (directly or
indirectly) in a higher or parent clause. I will further discuss this in the context of the
rank-scale concept in Section 3.4.1.

A situation converse to reiteration and coordination where an element is filled
by more than one unit is known as conflation, where a unit can take more than one
function within another.

Definition 3.3.10 (Conflation). Conflation is the relationship between two elements
that are filled by the same unit having the meaning of “immediately after and fused
with” and function as one element (Fawcett 2000: 249–250).

Conflation is useful in expressing the multi-faceted nature of language when for
example syntactic and semantic elements/functions are realised by the same unit.
For example the Subject “the girl whom he is talking to” is also a Carrier while the
Complement “an opera singer” is also an Attribute. Also conflation relations frequently
occur between syntactic elements as well such as for example the Main Verb and
Operator or Operator and Auxiliary Verb.
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The Cardiff Grammar in case of both coordination and embedding relations deals
without hypotaxis and parataxis relations described in the Sydney Grammar.

Note also that filling and componence are two complementary relations that occur
in the syntactic tree down to the level when the analysis moves out of abstract syntactic
categories to more concrete categories of items via the relationship of exponence.

3.4 Critical discussion of both theories: conse-
quences and decisions for parsing

The two sections above cover the definitions and fundamental concepts from each
of the two systemic functional theories of grammar. The work in this thesis uses a
mix of concepts from both theories and this section discusses in detail what is being
adopted and why a pragmatic reconciliation is attempted for the purposes of achieving
a parsing system rather than a theoretical debate. Next I draw parallels and highlight
correspondences between the Sydney and Cardiff theories of grammar and where they
differ I present the position on the matter adopted in this thesis.

3.4.1 Relaxing the rank scale

The rank scale proposed by Halliday (2002) became over time a controversial concept
in SFL literature. The discussion whether it is suitable for grammatical description or
not still continues. The historic development of this debate is documented in some
detail in Fawcett (2000: 309–338).

In this section I present a few cases highlighting when the rank scale as defined
by Sydney is too rigid. As a consequence for the purpose of this thesis I will drop
the rank scale constraints as enunciated in Generalisation 3.2.2. Also the rankshift
operation, exceptionally employed to accommodate special cases, is overridden by a
broad definition of the embedding operation (Definition 3.3.9) treated as naturally
occurring phenomena in language at all ranks. I do not entirely dismiss the concept of
the rank scale as proposed by the Cardiff school as I still find it useful in classification
of units.

(22) some very small wooden ones

Consider the nominal group 22. Here the modifying element, the Epithet “very
small”, is not a single word but a group (Halliday & Matthiessen 2013b: 390–396).
However, the rank scale constraints mentioned above state that the group elements need
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to be filled by words, or, therefore, word complexes. To account for this phenomena,
Halliday introduces a substructure of modifiers and heads leading to a logical structure
analysis as the one in Table 3.3. In such a structure the modifier is further broken
down into a Sub-Head and Sub-Modifiers.

some very small wooden ones
Modifier Head

δ γ β α
Sub-Modifier Sub-Head

γβ γα
Table 3.3 Sydney logical structure analysis of Example 22

The corresponding experiential structure analysis is provided in the Table 3.4
Halliday & Matthiessen (2013b: 391). Accordingly, the Epithet “very small” is
composed of a quality adjective “small” and an enhancer modifier “very”.

some very small wooden ones
Deictic Epithet Classifier Thing

Sub-Modifier Sub-Head
Table 3.4 Sydney experiential analysis of Example 22

As you can see, the elements are further broken down into sub-elements composing
in a way a structure of their own. This is possible because of the poly-structural and
multi functional approach to clause analysis which in this case leads to a complex
structure of a nominal group. This kind of intricate cases can be simplified by allowing
elements of a group to be filled by other groups or expounded by words. This way,
instead of having a sub-modifier construction one simply considers that the Epithet is
filled by an adjectival or nominal group which in turn has its own structure. I mention
adjectival or nominal group here because in the Sydney grammar the adjectival group
is considered as a nominal group with covert Thing, where the Epithet acts as Head
(Halliday & Matthiessen 2013a: 391); this however is a discussion beyond the point I
make here.

The same example analysed with Cardiff grammar would look as in Table 3.5. It
follows precisely the above suggestion of filling the Epithet with another unit, in this
case a Quality Group which in turn has its own internal structure.

(23) Indians had originally planned to present the document to President Fernando
Henrique Cardoso.
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some very small wooden ones
Quantifying Determiner Modifier Modifier Head

Quality Group
Degree tamperer Apex

Table 3.5 Cardiff analysis of Example 22

Indians had originally planned to present the document to President Fernando Henrique Cardoso
Mood Residue

Subject Finite Adjunct Predicator Complement Adjunct

nominal group adverbial group nominal group prepositional phraseverbal group
Table 3.6 Sydney grammar Mood analysis of Example 23

Another case that deems the rank scale constraints too strict for the present work
is in the case of Finite element in the Clause. Consider example 23 where the Finite
and Predicator elements are filled by a single unit which is the verbal group which is
against the constituency principles which restricts the composition relation to engage
only with whole units.

Alternatively, if the unit filling the Finite element is considered separate from the
verbal group filling the Predicator then it is always a single word, a modal verb, and
never a verbal group. This again is a breach in the rank scale constraints as originally
set out which postulates that a unit may be composed of units of equal rank or a rank
higher and cannot be composed of units that are more than one rank lower and so it is
not permitted to have clause elements expounded by words directly.

The two cases above I use to demonstrate how the rank scale construct as defined
by the Sydney grammar is too rigid and thus unsuitable for the current work. I drop
the constituency constraints hence allowing the flexibility for elements to be filled by
other units or, in other words, allow unit embedding. This approach removes the need
of sub-structures in the unit elements, reducing thus the structural complexity as seen
in Table 3.5.

The weakening of constituency constraints makes embedding a regular (broadly
defined in Definition 3.3.9) rather than an exceptional phenomena (strictly defined in
Definition 3.2.5).

An approach to describe units outside the rank-scale was suggested by Fawcett
(2000) and Butler (1985). Fawcett proposes replacing it with the filling probabilities to
guide the unit composition simply mapping elements to a set of legal unit classes that
may fill it. Units are carriers of a grammatical pattern and can be described in terms
of their internal structure instead of their potential for operation in the unit above.
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Nonetheless I do not abandon the rank scale completely and I use it as the top level
classifier of grammatical units (see Figure 3.10) falling in line with more traditional
syntactic classes.

3.4.2 Approach to structure formation

The unit and structure are two out of the four fundamental categories in systemic
theories of grammar. The Sydney and Cardiff theories vary in their perspectives on
unit and structure influencing how units are defined and identified.

For Halliday, the structure (Definition 3.2.6) characterises each unit as a carrier
of a pattern of a particular order of elements. The order is not necessarily a linear
realisation sequence but a theoretical relation of relative or absolute placement. This
perspective has been demonstrated to be useful in generation where unit placement
emerges out of the realisation process.

The Cardiff School takes a bottom up approach and defines class in terms of its
internal structure describing a relative or absolute order of elements. This sort of
syntagmatic account is precisely what is deemed useful in parsing and is the one
adopted in this thesis. In this work, as motivated in the Introduction, generation of
the constituency structure is derived from the Stanford dependency parse trees. As it
consists of words and relations between them the intuitive approach to form groups,
clauses and complexes is by working them out bottom up.

The method is to let the unit class emerge from recognition of constituent word
classes and dependency relations between, or sequences, of already formed lower units.
The exact mechanism how this is done I explain in Chapter 8. What is important to
note here is the bottom-up approach which is in line with Cardiff way of defining unit
classes in contrast to top-down approach of Sydney school.

3.4.3 Relation typology in the system networks

As a system is expanded in delicacy to form a systemic network of choices, choice
of a feature in one system becomes the entry condition for choices in more delicate
systems below. Halliday states that the relation on the systemic cline of delicacy is
essentially one of sub-categorisation (see Definition 3.2.11). In this subsection I argue
for occurrences of multiple kinds of inter-systemic relations. I also call them activation
relations because in the traversal process from less to more delicate systems, when
choices are made in the former then choice making is enabled or activated in the latter.
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Next I present a distinction between two activation relations: sub-categorisation
and choice enabling, which are of interest in the present thesis but by no means exhaust
the possibilities; more work is needed here.

Lets take as example the polarity system represented in figure 3.8. It contains two
choices, either positive or negative. An increase in delicacy can be seen as a taxonomic
“is a” relationship between features of higher systems and lower systems as in the case
of POLARITY TYPE and NEGATIVE TYPE in Figure 3.8 and in fact for the rest of
the network as well. As a side note, the delicacy in a system network is akin to the
sub-classification relation, which was originally the intended one and the predominant
one. In practice, however, a few kinds of abstraction relations can be encountered (e.g
abstraction as information reduction, as approximation, as idealisation etc.) extensively
treated by Saitta & Zucker (2013). This discussion however is beyond the scope of the
current work.

POLARITY-
TYPE

positive

negative NEGATIVE-
TYPE

interpersonal INTERPERSONAL-
TYPE

syntactic SYNTACTIC-
TYPE

verbal-marker

nominal-marker

adverbial-marker

morphological

textual TEXTUAL-
TYPE

continuative-marker

conjunctive-marker

Fig. 3.8 System network of POLARITY

The activation relation among systems in the cline of delicacy is not always
taxonomic. However, another relation is “enables selection of” without any sub-
categorisation implied. As an example see the FINITENESS system in Figure 3.9
where in case that the finite option is selected then what this choice enables is not
sub-types of finite but merely other systems that become available i.e. DEIXIS and
INDICATIVE TYPE. The latter is there because selection of finite implies also selection
of indicative feature in a sibling of FINITENESS system, MOOD-TYPE (depicted in
Figures 1.5 and 1.7) comprised of options indicative and imperative.

The distinction in the systemic relations is incorporated into the technical data
structure definitions and traversal algorithms proposed in Chapter 7.

3.4.4 Unit classes

In SFL at large there is the consensus that linguistic forms and meanings are intertwined
and mutually determined just like for any sign in a Saussurean approach to language.
Both Halliday (quote below) and Fawcett (Definition 3.3.1) adopt this position.
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FINITNESS

finite

non-finite
NON-
FINITE-TYPE

imperfective

perfective

DEICTICITY temporal

modal

INDICATIVE-
TYPE

declarative

interrogative

Fig. 3.9 A fraction of the FINITENESS system where increase of delicacy is not a “is a”
relation

. . . something that is distinctly non-arbitrary [in language] is the way
different kinds of meaning in language are expressed by different kinds of
grammatical structure, as appears when linguistic structure is interpreted
in functional terms (Halliday 2003a).

When it comes to establishing the lexico-grammatical classes the two schools diverge.
Halliday adopts the traditional grammar word classes or parts of speech: noun, verb,
adjective etc. He then derives a set of groups (e.g. nominal group, verbal group,
adverbial group etc.) that share properties of the word classes. In fact the class,
in Halliday’s words, “indicates in a general way its potential range of grammatical
functions” (Halliday & Matthiessen 2013b: 76). For example the nominal group is a
formation that functions as a noun may do and expresses the same kind of meaning.

Following the idea that major semantic classes of entities (situations, things, qualities
and quantities) correspond to the major syntactic units, Fawcett decided to mirror
them in the lexico-grammar. This led to a semantically based classification of syntactic
units: clause, nominal group, prepositional group, quality group and quantity group
(Fawcett 2000: 193–194) along with a set of minor classes such as genitive and proper
name clusters. This is, in a way, a tight coupling of the grammatical units with an
ontology which may be subject to change in the future. The converse may also be
stated that the traditional parts of speech are disconnected from the semantics in the
sense that there is no one to one correspondence (as Fawcett attempts) but rather a
complex set of mappings. Establishing the exact interface of syntax and semantics is a
hot ongoing theoretical exploration across the entire linguistic discipline and a difficult
task in practice. This discussion however is beyond the scope here. In the current
work, as will be reiterated in Chapter 4, I adopt the Sydney classification of syntactic
units that is close in line with traditional syntactic classifications (Quirk et al. 1985). I
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adopt the clause as a unit plus the four group classes of the Sydney grammar depicted
in Figure 3.10a.

GROUP-
TYPE

nominal-group

verbal-group

prepositional-group

adverbial-group

adjectival-group

(a) The group classes

WORD-
TYPE

marker MARKER-
TYPE

preposition

conjunction

expletive

adjective ADJECTIVE-
TYPE

simple

comparative

superlative
determiner

noun
NOUN-
TYPE

proper

common

pronoun

adverb

verb

punctuation

interjection

unknown

(b) The word classes

Fig. 3.10 The group and word classes

The word classes or part of speech tags that I adopt here are those of the Penn tag set
(Marcus et al. 1993) which, like Sydney word classes (depicted in Figure 3.10b), are also
in line with traditional grammar. This tag set has become a widely accepted standard
in mainstream computational linguistics and there are multiple implementations of
part of speech taggers. The Stanford Parser which plays an important role in the
software implementation of this thesis described in Chapter 5, employs precisely the
Penn tag set.

The Penn tag set was developed to annotate the Penn Treebank corpora (Marcus
et al. 1993). It is a large, richly articulated tag set that provides distinct codings for
classes of words that have distinct grammatical behaviour.

The Penn tag set is based on the Brown Corpus tag set (Kucera & Francis 1968) but
differs in several ways. First, the authors reduced the lexical and syntactic redundancy.
In the Brown corpus there are many unique tags to a lexical item. In the Penn tag set
the intention is to reduce this phenomenon to a minimum. Also distinctions that are
recoverable from lexical variation of the same word such as verb or adjective forms or
distinctions recoverable from syntactic structure are reduced to a single tag.

Second, the Penn Corpus takes into consideration the syntactic context. Thus the
Penn tags, to a degree, encode syntactic functions when possible. For example, one is



3.4 Critical discussion of both theories: consequences and decisions for parsing 67

tagged as NN (singular common noun) when it is the head of the noun phrase rather
than CD (cardinal number).

Third, the Penn POS set allows multiple tags per word, meaning that the annotators
may be unsure of which one to choose in certain cases. There are 36 main POS and
12 other tags in the Penn tag set. A detailed description of the schema, the design
principles and annotation guideline is given in Santorini (1990). Figure 3.10b depicts a
classification summarising the Penn tag set.

3.4.5 Syntactic and semantic heads

In SFG heads may be motivated by semantic or syntactic criteria (simply called here
semantic or syntactic heads). In most cases they coincide but there are exceptions
when they differ and diverge. This topic is especially important in the discussions of the
nominal group structure (continued in Section 4.1.3) on which Halliday & Matthiessen
(2013b) offers a thorough examination and Fawcett (2000) provides a more generic
perspective.

In this discussion I show a few examples when the syntactic and semantic heads
diverge and argue my position on the group formation on two points. First, the class of
the Head (in the Sydney school) or pivotal element (in the Cardiff school) is not always
raised to establish the group class but the whole underlying structure determines the
group class. Second, syntactically motivated heads are easy to establish because they
are based solely on formal grounds whereas semantic heads require an evaluation at the
level of an entire group, once one is established, employing additional lexical semantic
resources. This can be a two step process but in the current implementation reported
here only the group structure on syntactic grounds is provided.

As mentioned before in Section 3.2.5, the Sydney grammar follows the exhaustiveness
principle (Generalisation 3.2.3) through multiple parallel structures while the Cardiff
grammar puts the principle of a single syntactic structure resembling a mixture of the
former.

Let’s briefly return to Example 22 analysed with the Sydney grammar in Tables
3.3 and 3.4 that reflect the nominal group logical and experiential structures (Halliday
& Matthiessen 2013b: 391). When the Head (called here the syntactic head of the
nominal group) coincides with the Thing (called here the semantic head) we say that
they are conflated (Definition 3.3.10) and examples such as this one may lead to the
assumption that the Head, which is motivated by syntactic criteria, is also always the
Thing, which is motivated by the semantic criteria, but this is not so.



68 Systemic functional theory of grammar

The logical structure is a Head-Modifier structure and “represents the generalised
logical-semantic relations that are encoded in the natural language” (Halliday &
Matthiessen 2013b: 388). The experiential structure of the nominal group as a whole
has the function of specifying the class of things, through the Thing element, and some
category of membership in this class, through the rest of the elements. In the nominal
group there is always a Head but the Thing may be missing and so the Head element
is conflated with either Epithet, Numerative, Classifier or Deictic instead.

(24) (Have) a cup of tea.

(25) The old shall pass first.

(26) I’ll give you three.

Consider Example 24 analysed with the Sydney and Cardiff grammars in Table 3.7.
In the Sydney Grammar the semantic and the syntactic heads differ. In the experiential
analysis the semantic head is “tea” which functions as Thing, while in the logical
analysis the syntactic head is “cup” which functions as Head. The Cardiff Grammar
does not offer multi-structural analysis and there is no Head/Thing distinction. The
functional elements are already established based on semantic criteria and this is further
discussed in Section 4.1.3.

a cup of tea

Sydney Grammar experiential Numerative Thing
logical Pre-Modifier Head Post-Modifier

Cardiff Grammar Quantifying Determiner Selector Head
Table 3.7 Analysis of Example 24 with Sydney and Cardiff grammars: diverging semantic

and syntactic heads.

In the nominal group “The old” which is Subject in Example 25, the Head is the
adjective “old” and not a noun as would normally be expected. The noun modified by
the adjective “old”, also the pivotal element of the group defined in Section 3.3.2, is left
covert and it should consequently be recoverable anaphorically or cataphorically from
the context. We can insert a generic noun “one” to form a canonical noun group “the
old one”. In such cases when the pivotal noun is missing, the logical Head is conflated
with the other element in this case the Epithet. The group class is not raised from
the word class to quality group but is identified by internal structure of the whole
group and in this case the presence of determiner signals a nominal class. Similarly, in
Example 26, “three” in the Sydney grammar is a nominal group where the Thing is
missing and the Head has shifted left towards the Numeral. With examples such as
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these, Fawcett argues that none of the constituting elements of the unit is mandatorily
realised, even the so called pivotal element which is the group defining element. An
in depth description of the recovering mechanisms for covert nominal elements at the
level of the clause is provided in Chapter 6.

In this work I adopt the principles for establishing the logical structure of the Sydney
Grammar. It resonates closely with the traditional “semantically blinded” grammars
because it always provides a Head element even if it differs from the syntactically
motivated pivotal element in the Cardiff Grammar. Moreover these logical Heads
correspond to dependency heads established in the Stanford dependency parse. Chapter
5 provides the grounds for cross-theoretical mappings and the empirical evaluation in
Chapter 10 validates this.

It is not unusual in languages to have nominal groups with the Thing missing or
elliptic clauses with the Main verb missing; therefore no rigid correspondence can
be established between the logical Head and unit class. In this work the structure
creation is performed in two steps: first establishing the group boundaries and the
unambiguous unit elements through a top down perspective (that is Sydney approach to
unit creation), and second for each established group evaluating the internal structure
in order to establish the group class (that is the Cardiff approach to group formation).
This process is detailed in Chapter 8.

The evaluation in the second step, besides finalising the syntactically motivated
unit structure, can as well assign semantically motivated unit structure. This part
however is omitted in the current thesis for the groups and only the clauses receive
semantic role labels and process types as described in Chapter 9.

3.4.6 Coordination as unit complexing

In the Sydney Grammar unit complexes fill an important part of the grammar along
with the taxis relations (Definition 3.2.14) which express the interdependency relations
in unit complexes. Parataxis relations bind units of equal status while the hypotaxis
ones bind the dominant and the dependent units. Fawcett bypasses the taxis relations
replacing them with coordination and embedding (Fawcett 2000: 271) and leading to
abandonment of unit complexing entirely. While embedding elegantly accounts for the
depth and complexity of syntax, this approach to coordination is problematic.

Hereafter I discuss the utility and even necessity of keeping unit complexes in
parsing. In particular I address the treatment of group and clause coordination but
the same principle applies to other fixed structures such as comparatives, conditionals
or appositions.
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Treatment of the coordination phenomena is a challenge not only for SFL but for
other linguistic theories as well. The Sydney Grammar approaches it through unit
complexing and taxis relations while the Cardiff Grammar treats this phenomena as
multiple distinct units filling or expounding the same element.

Table 3.8 illustrates an example Sydney style analysis where the Complement is
filled by a homogeneous nominal group complex held together through paratactic
extension where the first element is a nominal group and the second is a nominal
group together with the conjunction which is not part of the experiential structure but
remains only in the logical structure of the nexus.

Ike washed his shirt and his jeans
Subject Predicate/Finite Complement

1 +2
Deictic Thing Deictic Thing

Table 3.8 Clause with nominal group complex

In Table 3.9 the Epithet is filled by a nexus of paratactic extension. The first
element of the nexus is the word “immediate” and the second element is the sequence
of words “and not so far distant”. The “not so far distant” is an adverbial group with a
logical structure of sub-modifiers already discussed in Section 3.4.1 and the conjunction
“and” is left implicitly part of the logical structure of the nexus creating a gap in the
structure that is addressed in this discussion. Also note that, in the Sydney Grammar,
the coordination is described as a unit complex ensuring that only one unit fills an
element of the parent, in contrast, as we will see below, to the Cardiff Grammar.

the immediate and not so far distant future
Modifier Head

γ β α
Deictic Epithet Thing

1 +2
Sub-Modifier Sub-Head
δ γ β α

Table 3.9 Nominal group with word complex from (Halliday & Matthiessen 2013b: 564)

Table 3.10 presents an example of analysis with the Cardiff Grammar. The
Complement is filled by two sibling nominal groups “his shirt” and “and his jeans”,
both of which fill the same element in accordance to Definition 3.3.7. The conjunction
“and” is described directly as part of the nominal group structure.
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Ike washed his shirt and his jeans
Subject Main Verb Complement

Deictic Determiner Head & Deictic Determiner Head
Table 3.10 Coordination analysis in Cardiff Grammar

Opinions are divided (between the Sydney and Cardiff schools) whether to accept
the notion of a complex unit to handle coordination or not. If we side with the Cardiff
grammar and dismiss the unit complex then we allow an element to be filled by more
than one unit. And this is a problem because if we do not assign unit elements each
in a unique place within the unit structure then we loose the capacity to order them.
Therefore in this thesis I adopt the Sydney definition of structure (Definition 3.2.6)
that constrains each element into a single place that is filled by another unit. Therefore
the conjunction must be a nexus acting as a single unit filling a single element.

I argue for adoption of such a unit type in order to ensure that a maximum of one
unit can fill the place of an element. In the theory of grammar, only units account
for structure while elements can only be filled by a unit (see Figure 3.2). Allowing
multiple units to fill an element requires accounting at least for the order if not also for
the relation between the filler units. The structure as it is described in the theories of
grammar by Halliday (Halliday 2002) and Fawcett (Fawcett 2000) is defined by the unit
and not the element. There is no direct reference in the theory to the unit ordering.
Instead, the order relation is handled in the structure through the concept of place, as
define in the Cardiff Grammar. A unit has a specific possible structure in terms of
places of elements which hold absolute position in the unit structure or relative one to
each other. Therefore if an element is filled by two units simultaneously it constitutes
a violation of the above principle as the order of those units is not accounted for but
this matters as can easily be shown in the following examples.

(27) (Both my wife and her friend) arrived late.

(28) * (And her friend both my wife) arrived late.

(29) I want the front wall (either in blue or in green).

(30) * I want the front wall (or in green either in blue).

If the order would not have mattered then we could say that the conjunctions
from Example 27 can be reformulated into 28 and the one from 29 into 30. But such
reformulations are grammatically incorrect. Obviously the places do matter and they
need to be handled in the unit structure as one element per place with no more than a
single unit filling it.
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I turn now to the role and position of lexical items signalling the conjunction which
I consider to have no place in the structure of the conjoined units but lies outside of
them, that way forming together a higher order unit, the complex unit. This is contrary
to what is being described in the Cardiff and Sydney grammars for different reasons.

Fawcett presents the Linker elements (&) which are filled by conjunctions as parts
of virtually any unit class placed in the first position of the unit. For example in the
“or in green” the presence of “or” signals the presence at least of one more unit of the
same nature and does not contribute to the meaning of the prepositional group but to
the meaning outside the group requiring presence of a sibling. Even more, the lack
of a sibling most of the time would constitute an ungrammatical formulation. The
only potential objection here is for the perfectly acceptable cases of clauses/sentences
starting with a conjunction such as “and” or “but”. In those cases the conjunction plays
a textual function and still invites the presence of a sibling clause/sentence preceding
the current one to be resolved in a clause complex or at the discourse level.

Halliday omits to discuss in IFG (Halliday & Matthiessen 2013b) the place of
Linkers. He implicitly proposes the same as Fawcett through his examples of paratactic
relations at various rank levels (Halliday & Matthiessen 2013b: 422, 534, 564, 566)
that the lexical items signalling conjunction are included in the units they precede
in the logical structure but not the experiential one. The main insufficiency here is
that the logical structure does not provide any meaningful elements or unit class but
some sort of proto-elements that resemble rather places than functions. In this sense I
consider treatment of conjunctions insufficiently accounted for in IFG.

So conjunctions and pre-conjunctions shall not be placed inside the conjoined units
because they do not contribute to their meaning. They shall be enclosed as Linkers
into unit complexes. But if we adopt the unit complexing then we need to define a unit
structure. Hence I propose the following generic structure for the coordination unit.

Pre-Linker Initiating Conjunct ... Conjunct ... Linker Conjunct
1 + 2 ... + n-1 + n

Table 3.11 Generic structure of the coordination unit

In Table 3.11 the first row presents a series of Conjuncts where the first one is
initiating or the head and the rest are continuation Conjuncts of the former. In the first
place there may be a Pre-Linker element such as “both” or “either” for example, but it
is optional and in the place before the last one the Linker element that determines the
type of coordination is located. On the second row I provide, for orientation purposes,
the Sydney logical structure of a paratactic expansion applied to the coordination
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unit complex. Note that the Pre-Linker and the Linker elements are merged with the
conjoined units.

Applying this structure to the previous example yields analysis such as in Table
3.12. The nominal group has the Epithet element filled by a coordination group formed
of two Conjuncts and a Linker.

the immediate and not so far distant future
Determiner Epithet Head

Initiating Conjunct Linker Conjunct
Table 3.12 Example analysis with coordination unit complex structure

Adopting the unit complex and in particular the coordination unit requires two
more clarifications: (1) does the complex unit carry a syntactic class, and if so according
to which criteria is it established? (2) Does it have any intrinsic features or are all of
them inherited from the conjuncts?

Zhang states in her thesis that the coordinating constructions do not have any
categorial features and so there is no need to provide a new unit type. Instead the
categorial properties of the conjuncts are transferred upwards (Zhang 2010). For
example if two nominal groups are conjoined then the complex receives the nominal
class.

This principle holds for most of the cases; however, there are rare cases when the
units are of different classes. Consider 31 analysed in Table 3.13 where the conjuncts
are a nominal group “last Monday” and a prepositional group “during the previous
weekend”.

(31) I lost it (either last Monday or during the previous weekend).

either last Monday or during the previous weekend
Pre-Linker Initiating Conjunct Linker Conjunct

Table 3.13 Coordination group with mixed class conjuncts

In this case there are two unit types that can be raised and it is not clear how
to resolve this case. Options are (a) to leave the generic class coordination complex,
(b) transfer the class of the first unit upwards, or (c) semantically resolve the class as
both represent temporal circumstances even if they are realised through two different
syntactic categories (unless using the Sydney model then the resolution is grammatical).
This means that if no sub-classification is provided based on the constituent units
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below than there is no need to project/transfer upward the class of the conjunct units.
In this work I decided to leave the class generic and leave for the future an extensive
unit complex classification.

I turn now to the last issue of this discussion, specifically whether the complex unit
may have intrinsic features emerging from the conjunct elements.

In Examples 32 and 33 the conjunction of two singular noun groups requires plural
agreement with the verb. Even though semantic interpretation is that only one item
is selected at a time, syntactically both items are listed in the clause and attempting
third person singular verb forms as in Examples 34 and 35 is grammatically incorrect.
This leads to the conclusion that the coordination complex can have categorial features
which none of the constituting units have.

(32) A pencil or a pen are equally good as a smart-phone.

(33) A fork and knife have to be placed on the sides of each plate.

(34) * A pencil or a pen is equally good as a smart-phone.

(35) * A fork and knife has to be placed on the sides of each plate.

conjunction
CONJUNCTION-

RELATION

addition
ADDITION-

TYPE

additive-positive

additive-negative

adversative

variation
VARIATION-

TYPE

replacive

substractive

alternation

causal-conditional
CAUSAL-

CONDITIONAL-TYPE

reason

concessive

conditional

temporal
TEMPORAL-

TYPE

same-time

different-time

Fig. 3.11 Systemic network of coordination types

In the case of nominal group conjunction we can see that the plural feature emerges
even if each individual unit is singular. For other unit classes it is not so obvious
whether there are any linguistic features that emerge at the conjunction level. The
meaning variation is semantic as for example conjunction of two verbs or clauses
might mean very different things - such as consecutive actions, concomitant actions or
presence of two states at the same time and so on. This brings us to another feature
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of the coordination complex - the type of the relationship it constructs. The lexical
items expounding the Linker and Pre-Linker (e.g. and, or, but, yet, for, nor or so) are
indicators of relationship among the conjuncts and together can be systematised as
the relationship types in the systemic network in Figure 3.11.

This section laid out how and why I treat the coordination phenomena in parsing.
I adopt the unit complexing mechanism with taxis relations described in the Sydney
grammar in order to provide a new unit class, the coordination unit. I do that to ensure
that each element of a unit is filled by no more than one other unit, contrary to what
the Cardiff grammar proposes (see Definition 3.3.7). But taxis relations in the Sydney
grammar are represented via logical structures which are not rich enough to account
for internal structure of the coordination unit. Therefore I also propose here a unit
structure in terms of ordered functional elements just as for the rest of the unit classes.

3.5 Summary
This chapter has introduced the basic notions of systemic functional linguistics and
presented a consideration of the Sydney and Cardiff theories of grammar with respect
to the task of parsing.

First, in Section 3.2, I introduced the Sydney theory of grammar that gave rise
to SFL. Then, in Section 3.3, I introduce the Cardiff theory of grammar. This builds
on top of the Sydney school but differs in several important ways from it. Finally, in
Section 3.4, I conducted a critical discussion of important aspects of both grammars
such as unit, class, function, element, rank scale, unit heads and structure. This
discussion settles my position on some elements of the theory of grammar that will be
necessary in the next chapter for presenting the grammar currently implemented into
the Parsimonious Vole parser.





Chapter 4

Parsimonious Vole grammar

Now that the main theoretical foundations have been covered, I describe the structure
of grammatical units and system networks adopted in this thesis and implemented in
the Parsimonious Vole parser. Some of them are from the Sydney and others from the
Cardiff grammars. There are many common parts but also differences in parts of their
paradigmatic and syntagmatic descriptions.

First I discuss the structural differences between main units in the Sydney and the
Cardiff grammars: the clause, the verbal group, nominal group, the adjectival and
adverbial groups. Then, I focus on two important system networks: TRANSITIVITY
and MOOD. The first is adopted from the Cardiff grammar and the second belongs to
the Sydney grammar.

4.1 Grammatical units
The general principle for selection is that some unit structures are closer to traditional
syntactic analysis and so possible to connect the elements of the Dependency grammar.
There are some units in both Sydney and Cardiff grammars that fit this purpose
and some others that are semantically grounded and are more difficult to capture
in structural variance, requiring additional lexical-semantic resources. This section
discusses choices made for the current work.

4.1.1 Verbal group and clause boundaries

In the Sydney Grammar the verbal group is described as an expansion of a verb just
like the nominal group is the expansion of the noun (Halliday & Matthiessen 2013b:
396). There are certainly words that are closely related and syntactically dependent
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on the verb all together forming a unit that functions as a whole. For example the
auxiliary verbs, adverbs or the negation particles are words that are directly linked to
a lexical verb. The verb group functions as Finite + Predicator elements of the clause
in Mood structure and as Process in Transitivity structure.

In the Cardiff Grammar the verb group is dissolved, moving the Main Verb to the
pivotal element of the Clause unit. All the elements that form clause structure and
those that form verb group structure are brought together to the same level as elements
of a clause. The clause structure in the Cardiff Grammar comprises elements with
clause related functions (like Subject, Adjunct, Complement etc.) and other elements
with Main Verb related functions (Auxiliary, Negation particle, Finite operator etc).

Regarded from the Hallidayan rank scale perspective, merging the elements of the
verb group into clause structure is not permitted because the units are at different
ranks. However this is not a problem for the relaxed rank scale version presented in
Section 3.4.1. This in fact is also the approach taken in the Nigel grammar (Penman
Project 1989b). The reason for adopting such an approach is best illustrated via
complex verb groups with more than one non-auxiliary verb as in Examples 36–38.

I begin by addressing the impact of this merger on (a) the clause structure (b) the
clause boundaries and (c) the semantic role distribution within the clause.

(36) (The commission started to investigate two cases of over-fishing in Norway.)

(37) (The commission started (to investigate two cases of over-fishing in Norway.))

(38) (The commission started (to finish (investigating two cases of over-fishing in
Norway.)))

In the Sydney Grammar “started to investigate” (in Example 36) is considered
a single predicate of investigation which has specified the aspect of event incipiency
despite the fact that there are two lexical verbs within the same verbal group. The
“starting” doesn’t constitute any kind of process in semantic terms but rather specifies
aspectual information about the investigation process. This is argued by looking at
the conditions on participants and it is equivalent in a formal approach to looking at
where the selection restrictions for complements come from. The boundaries of the
clause governed by this predicate stretch to the entire sentence.

Semantically it is a sound approach. Despite the presence of two lexical verbs there
is only one event. However, allowing such compositions leads to unwanted syntactic
analysis for multiple lexical verb cases in examples such as 38. To solve this kind
of problem Fawcett dismisses verb groups and merges their elements within clause
structure. He proposes the syntactically elegant principle of one main verb per clause
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(Fawcett 2008). Applying this principle to the same sentence yields a structure of
two clauses illustrated in example 37 where the main clause is governed by the verb
“to start” and the embedded one by the verb “to investigate”. Note the conflict of
“one main verb per clause” with Halliday’s principle that only whole units form the
constituency of others (the (c) principle of rank scale described in Section 3.4.1). So
allowing incomplete groups into the constituency structure would breach the entire
idea of unit based constituency.

Semantically the clause in SFL is a description of an event or situation as a figure
with a process, participants and eventually circumstances where the process is realised
through a lexical verb. Looking back to our examples, the question is then does the
verb “to start” really describe a process or merely an aspect of it? Halliday treats such
verbs as aspectual and when co-occurring with other lexical verbs they are considered
to form a single predicate. Accommodating Fawcett’s stance, mentioned above and
contradicting Halliday’s approach, requires weakening the semantic requirement and
allowing aspectual verbs to form clauses that contribute aspectually or modally to the
embedded ones. I mention also the modal contribution because some verbs like want,
wish, hope and others behave syntactically like the aspectual ones. Moreover, Fawcett
introduces into the Cardiff Grammar Transitivity network an influential process type
including all categories of meanings that semantically function as process modifiers:
tentative, failing, starting, ending etc.

I adopt here Fawcett’s “one main verb per clause” principle, which as a consequence
changes the way clauses are partitioned, leads to abolition of the verbal group and
introduces the “influential” process type. Next I discuss the impact of this verb group
abolition on the structure of clause units.

4.1.2 Clause

It is commonly agreed in linguistic communities that the unit of the clause is one of
the core elements in human language. The main clause constituents are roughly the
same in SFL as the ones in traditional grammar (Quirk et al. 1985), transformational
grammar (Chomsky 1957) and indirectly in dependency grammar (Hudson 2010).

I adopt the Cardiff Grammar clause structure where Main Verb is the pivotal
element of the unit. The clause is formed of the Subject, Finite, Main Verb, up to
two Complements and a various number of Adjuncts. All the elements that in the
Sydney grammar are part of the verbal group, such as Auxiliary Verbs, Main Verb
Extensions, Negators etc. are considered part of the clause structure. For a complete
list see Appendix A.
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(39) They were in the bar, Dave in the restroom and Sarah by the bar.

Although there is no element that is obligatorily realised in English, I consider in
the current work that every non-auxiliary lexical verb is a Main Verb and thus flags
presence of a clause unit. There are clauses, in SFL, without a main verb, such as
minor clauses (exclamations, calls, greetings and alarms) that occur in conversational
contexts and elliptical clauses Halliday & Matthiessen (2013b) such as the one in
Example 39, none of which are covered in the present work.

4.1.3 Nominal Group

The nominal group expresses things, classes of things or a selection of instances in a
class. This section argues for adoption of the Sydney grammar noun group structure
with a slight modification. The elements of the nominal group can be filled, in
addition to word units, by group units as well. This possibility is opened by the rank
scale relaxation (Section 3.4.1) and the Cardiff embedding principle (Definition 3.3.9).
Cardiff’s nominal units would be more difficult to process because of their semantic
nature and are left out of the current implementation for further work. Nonetheless,
I argue below for working towards semantic and syntactic heads in two steps: first
create the structure with the syntactic one (the Head) and then derive the semantic
one (the Thing), eventually arriving at the Cardiff nominal structure.

those two old electric trains from Luxembourg
Pre-Modifier Head Post-Modifier

Deictic Numerative Epithet Classifier Thing Qualifyier
determiner numeral adjective adjective noun prepositional phrase

Table 4.1 An example of a nominal group in the Sydney Grammar (Halliday & Matthiessen
2013b: 264)

In Table 4.1 an example analysis is presented of the nominal group proposed in
the Sydney grammar (Halliday & Matthiessen 2013b: 364–369). The Sydney nominal
group is constituted by a head nominal item modified by descriptors or selectors such
as: Deictic, Numerative, Epithet, Classifier, Thing and Qualifier. Each element has a
fairly stable correspondence to the word classes expected to be expounded by lexical
items. Table 4.2 presents the mappings between the elements of nominal group and
the word classes.

Inspired from the Cardiff grammar, in addition to word classes the elements of the
nominal group can also be filled by the group classes corresponding to each word class
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Experiential function in noun
group

class (of word or unit)

Deictic determiner, predeterminer, pronoun,
adjective

Numerative numeral(ordinal or cardinal)
Epithet adjective

Classifier adjective, noun
Thing noun

Qualifier prepositional phrase, clause
Table 4.2 Mapping of noun group elements to classes (Halliday & Matthiessen 2013b: 379)

above. This way the Numerative, in addition to words, can be filled by a noun group,
Epithet by an adjectival group, Classifier by an adjective or noun group and finally
each of the elements can be filled by a coordination group as discussed in Section 3.4.6.

The elements in the Cardiff Grammar differ from those of the Sydney Grammar.
Table 4.3 exemplifies a noun group analysed with the Cardiff Grammar covering all
the possible elements. Table 4.4 provides a legend for the Cardiff Grammar acronyms
along with mappings to unit and word classes that can fill each element.

or a photo of part of one of the best of the fine new taxis in Kew ,
pre-modifiers head post-modifiers

& rd v pd v qd v sd or od v dd m m h q e
Table 4.3 The example of a nominal group in Cardiff Grammar

The elements in the Cardiff Grammar are based on semantic criteria supported by
lexical and syntactic choices. Consequently some elements cannot be derived on solely
syntactic criteria, requiring semantically motivated lexical resources. The challenging
semantically bound elements from the Cardiff grammar are the following determiners
Representational, Partitive, Fractional, Superlative, Typic Determiners, while the
rest of the elements: Head, Qualifier, Selector, Modifier and Deictic, Ordinative and
Quantifying Determiners can be determined solely on syntactic criteria. The latter
correspond fairly well to the Sydney version of the nominal group, which is adopted in
the present work. In addition the relaxed rank scale discussed in Section 3.4.1 permits
replacing the nominal group sub-structures from the Sydney grammar with embedded
units just like in the Cardiff grammar simplifying the syntactic structures.

Another simplification is renouncing the distinction between the Head and Thing
(Halliday & Matthiessen 2013b: 390–396) discussed in Section 3.4.5. Thus if the logical
Head of the nominal group is a noun then it is labelled as the Thing leaving the



82 Parsimonious Vole grammar

sym-
bol

function meaning class (of word or unit)

rd representational
determiner

noun, noun group

v selector “of” preposition
pd partitive determiner noun, noun group
fd fractional determiner noun, noun group, quantity group
qd quantifying determiner noun, noun group, quantity group
sd superlative determiner noun, noun group, quality group, quantity

group
od ordinative determiner noun, noun group, quality group
td tipic determiner noun, noun group
dd deictic determiner determiner, pronoun, genitive cluster
m modifier adjective, noun, quality group, genitive

cluster
h head noun, genitive cluster
q qualifier prepositional phrase, clause
& linker conjunction
e ender punctuation mark

Table 4.4 The mapping of noun group elements to classes in Cardiff grammar

semantic discernment as a secondary process and out of the current scope. Otherwise,
in cases of nominal groups without the Thing element, if the Head is a pronoun
(other than personal), numeral or adjective (mainly superlatives), then it functions as
Deictic, Numerative or Epithet. So, as will be described in Chapter 8, I propose to
parse nominal groups in two steps: first determine the main constituting chunks and
assign functions to the unambiguous ones and, second, perform a semantically driven
evaluation for the less certain units.

Next I explain this two step process, using for illustration cases when the Thing is
present but is different from the Head as in examples 40–42.

(40) (a cup) of (tea)

(41) (some) of (those youngsters)

(42) (another one) of (those periodic eruptions)

These nominal groups can be analysed in two ways. They are either about the
“cup”, “some” or “another one”, leading to a structure where the first noun is the
head succeeded by a prepositional phrase Qualifier, or about “tea”, “youngsters” and
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“eruptions”, where the second noun is the head and so adopting a structure with
complex determiners.

Table 4.5 shows on the first row an analysis with syntactic head, i.e. the Head
defined in the Sydney grammar, and on the second row an analysis with semantic head,
i.e. the Head defined in the Cardiff grammar that also coincides with the Thing from
the Sydney grammar.

At a top level of structural embedding, the syntactic Head is always the first noun
in the nominal group. In the semantic evaluation phase special attention is given to
Qualifiers filled by prepositional phrases starting with preposition “of” and whether
the nominal group may function as qualifying, quantifying, ordination or other type of
determiner.

The Cardiff Grammar weakens the assumption that every prepositional phrase acts
as Qualifier in a nominal group and treat the preposition “of” as a special case. This
preposition is allowed to act not as the element introducing a prepositional phrase
but as a end mark of a determiner-like selector. When such a selector is present the
preceding noun group functions as a Determiner (of some sort) to the noun or nominal
group as can be seen in Table 4.5.

The nominal groups that contain a prepositional phrase Qualifier introduced by
the preposition “of” receive special attention because they may qualify the special case
explained earlier. If the above condition is satisfied then, in a second phase of nominal
group analysis aiming at semantic evaluation, the prepositional phrase Qualifier is
disassembled, the preposition “of” is ascribed a Selector function of the parent nominal
group, being transferred upwards in the structure, and the preceding nominal group
(syntactically headed) becomes one of the determiners. This approach shifts the noun
group head into the position of a semantically based Thing and evades the discrepancy
problem between them.

a cup of tea
1st step Determiner Head Qualifier
2nd step Quantifying Determiner Selector Head/Thing

Table 4.5 Example analysis with syntactic and semantic heads performed in two steps

The above explanation is not a straightforward solution. The distinction between
cases when the proposition “of” introduces a Qualifier or ends a Selector/Deictic
requires a lexical-semantic informed decision answering the question “what is the Thing
that this nominal group is about?”. And there is a lot of space for variations in the
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syntactic structure. For example in example 43 (where Head/Thing is marked in italic)
the preposition “of” introduces Qualifiers.

(43) He was the confidant of the prime minister.

(44) It was the clash of two cultures.

This section has discussed the problem of semantic and syntactic heads (started in
Section 3.4.5) applied to nominal groups in particular and how to approach parsing
them. I conclude that it is fairly unambiguous and straightforward to determine the
structure of nominal groups according to the Sydney grammar yielding a syntactically
based structure. Once such a structure is available it serves as basis for deriving the
semantic structure in terms of the Cardiff grammar. The current implementation of
the parser considers only the generation of syntactic structure leaving the semantically
motivated noun groups for future works.

4.1.4 Adjectival and Adverbial Groups

This section introduces how the adverbial and adjectival groups are handled by the
Sydney grammar and then how their equivalent quality groups are structured in the
Cardiff grammar. As the structure of the quality group is semantically motivated some
elements may be identified still at the syntactic level whereas others require a more
sophisticated lexical-semantic resource. In the last part of the section I estimate the
complexity of parsing some of the quality group elements.

Following the rationale of head-modifier similarly to the case of nominal groups,
the adjectives and adverbs function as pivotal elements to form groups. The structure
of adverbial and adjectival constructions is briefly covered in the Sydney grammar in
terms of head-modifier logical structures without an elaborated experiential structure
as in the case of nominal groups. While the adverbial group is recognised as a distinct
syntactic unit, the adjectival group is treated as a special case of nominal group.

(45) You’re a very lucky boy.

(46) You’re very lucky.

(47) The very lucky (one) is you.

In the environments where nominal group functions as Attribute, typically in
the attributive clauses such as Example 45, it can take also more contracted forms
without the Thing and Deictic where the Head moves left onto the Epithet as in
example 46. One particularity of these nominal groups which here are distinguished
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as adjectival group units is that they cannot function as subject. For Example 47
to be grammatical, where the Attribute is in the Subject position, a determiner and
eventually an unspecified nominal Head must be added.

The adverbial group in the Sydney Grammar has an adverb as Head which may or
may not be accompanied by modifying elements (Halliday & Matthiessen 2013b: 419).
The adverbial groups may fill modal and circumstantial adjunct elements in a clause
corresponding to the eight semantic classes of time, place, four types of manner and
two types of assessment. The adverbial pre-modifiers express polarity, comparison and
intensification along with only one comparison post-modifier (Halliday & Matthiessen
2013b: 420–421). The adjectival and adverbial group are covered by the quality group
unit in the Cardiff grammar.

A thorough systemic functional examination in terms of lexis was provided for the
first time by Tucker (1997, 1998), materialised as a lexical-grammatical systematisation
of adjectives and the fine grained structure of quality groups. Tucker avoids naming
the group according to the word class (adjective or adverb) but rather refers to the
semantic meaning of what both groups express, i.e. the quality of things, situations or
qualities themselves. The qualities of things have adjectives as their head while the
qualities of situations adverbs.

In the Cardiff Grammar, the head of the quality group is called Apex while the set of
modifying elements are Quality Group Deictic, Quality Group Quantifier, Emphasizing
Temperer, Degree Temperer, Adjunctival Temperer, Scope and Finisher. The quality
group most frequently fills complements and adjuncts in clauses and fill modifiers and
superlative determiners in nominal groups.

Just as in the case of nominal group, the adverbial and adjectival groups in the
Cardiff grammar are semantically motivated. To automatically identify elements of
the quality group would according to this scheme therefore require lexico-semantic
resources. No such resources were considered in the current thesis so this task is left
for future work.

I turn now to discuss some relevant affinities concerning the adverbial groups. Some
adverbs are different from others at least because not all of them can be heads of the
adverbial group. Usually the adverbs that cannot act as heads, such as for example
very, much, less and pretty, function as Emphasizing and Degree Temperers. The same
ones can also act as adjectival modifiers. A naive attempt to identify these Temperers
would be to use a list of frequent words found in these functions.

Other elements of the quality group, like the Scoper or Finisher, are more difficult
to identify and localise as part of the group only by syntactic cues and/or lists of words
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because of their inherent semantic nature. The Scopers and Finishers are known to
be prepositional phrases most of the time. And so the semantic resolution is reduced
to detecting whether a prepositional phrase fills a Qualifier element in the preceding
nominal group or fills a Complement or an Adjunct in the clause.

Another issue is continuity. The question is whether a grammar should allow at
least at a syntactic level discontinuous constituents or not. And then if so, how to
detect all the parts of the group even if they do not stand in proximity to each other.
For example, comparatives, a complex case of a quality group, could be realised in a
continuous or discontinuous form. Compare the analyses presented in Tables 4.6 and
4.7. In the first case the comparative structure is a continuous quality group. In the
second case the comparative is dissociated and analysed as separate adjuncts.

On one hand it is not a problem treating them as two adjuncts because that is
what they are from the syntactic point of view. However, semantically as Fawcett
proposes, there is only one quality group with a discontinuous realisation whose Scope
element is placed in a thematic position before the Subject.

I am much smarter today than yesterday
Subject Main Verb Adjunct
pronoun verb quality group

Emphasizing Temperer Apex Scope Finisher
Table 4.6 Comparative structure as one quality group adjunct

Today I am much smarter than yesterday
Adjunct Subject Main Verb Adjunct
adverb pronoun verb quality group

Emphasizing Temperer Apex Finisher
Table 4.7 Comparative structure split among two adjuncts

For an automatic process to identify a complex quality group is a difficult task.
It needs to pick up cues like a comparative form of the adjective followed by the
preposition “than” and then look for two terms being compared. Given some initial
syntactic structure such patterns could be modelled and applied but only as a secondary
semantically oriented process.

Since both the adverbial and adjectival groups have similar structures, it is syn-
tactically feasible to automatically analyse them in terms of head-modifier structures
in a first phase followed by a complementary process which assigns functional roles
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to the quality group components. This is the solution that is implemented in the
Parsimonious Vole parser.

4.2 System networks
The previous section described the units of structure adopted in the current work. I turn
now to describe two system networks selected for detailed treatment. MOOD system
network, adopted from the Sydney grammar, is close to terms and concepts of syntactic
structure in traditional grammar such as role and definition of Subject, Complement
and other functional elements. TRANSITIVITY, adopted from the Cardiff grammar,
is a semantically motivated system network and constitutes a good challenge addressed
in the current work. More details are presented below.

4.2.1 MOOD

One of the first system networks presented in the Introduction to Functional Grammar
(Halliday & Matthiessen 2013b) is that of MOOD (a reduced version is depicted in Figure
4.1). This system is introduced in the discussion of the interpersonal metafunction
of language. In this view a clause is conceptualised as a message exchanged between
dialogue interactants. A range of grammatical features from traditional grammar
such as mood, modality, aspect, mode, polarity, tense etc. are conveyed by this system
network.

The terms in SFL literature are steadily capitalised to distinguish system names,
functions and features. Note that here the MOOD (all capital) refers to the name of the
system network; the Mood (first capital) is an element of clause structure formed of the
Subject and Finite elements which, in fact, is not used in this work because of a general
orientation towards the Cardiff approach to structure; and the mood (no capital) is a
type of feature carried by finite clauses (e.g. imperative, indicative, interrogative etc.)

Figure 4.1 presents the MOOD system network employed in the current imple-
mentation of the Parsimonious Vole parser. This MOOD system is to a large extent
similar to the one from Halliday & Matthiessen (2013b: 162). It has a few adaptations
that were introduced during development with respect to the test corpus described
in Chapter 10. The adaptations consist of the adoption of a few traditional grammar
features such as tense and voice and simplification of the Hallidayan modality.
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clause STATUS

major

POLARITY-
TYPE

positive

negative

FREEDOM

free
MOOD-
TYPE

imperative

indicative

VOICE-
TYPE

active

passive

INDICATIVE-
TYPE

declarative

interrogative
INTERROGATIVE-
TYPE

yes-no

wh
WH-
SELECTION

wh-subject

wh-complement

wh-adjunct

bound FINITNESS

finite
MODAL-
DEIXIS

temporal

TIME
past

present

future

PROGRESSIVITY progressive

non-progressive

PERFECTIVITY perfect

non-perfect

modal
MODALITY-
TYPE

root
ROOT-
TYPE

inclination-volition

obligation-permission

ability

epistemic
EPISTEMIC-
TYPE

probability

usuality

non-finite
NON-
FINITE-TYPE

imperfective

perfective

minor

}

Fig. 4.1 An adaptation of the MOOD system network (Halliday & Matthiessen 2013b: 162)

The features of this feature network apply to units of clause class only. Even if
some features may be intuitive I iterate briefly over each of them providing cues for
identifying it.

The POLARITY system indicates whether the clause is affirmed or negated. The
negative polarity is indicated, in English, by the presence of a clausal particle not or
n’t. Negation in general can also be signalled by similar negative markers in other
clause elements such as the subject (e.g. “None of the kids came to play.”), adjunct
(e.g. “He is never coming back.”) or complement (e.g. “She loves no one.”). In the
present work I consider the clausal negative marker only.

VOICE in traditional grammar indicates, for transitive verbs, whether the subject
acts (active voice) or is acted upon (passive voice). In passive voice the subject and
complement change position and the former is introduced by the preposition by.

The semantics of the FREEDOM system is to indicate whether the clause is free
and realises a proposition or proposal and serves to develop an exchange in a dialogue
either by initiating or responding to a speech act. On the other hand bound clauses are
not open to negotiation and serve as supporting information to be taken as established.
Structurally, the bound clauses usually depend on a dominant one that is free.

The FINITENESS system indicates whether the clause is finite, i.e. something that
can be argued about. The way to make it arguable is by providing a point of reference
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into the here and now (temporal) or into the speaker’s judgement (modal). The latter
two features constitute the MODAL-DEIXIS system.

The MODALITY-TYPE system is an adaptation from Halliday & Matthiessen
(2013b: 689–692) that focuses on the usage of the modal verbs only and is organised into
ROOT and EPISTEMIC modalities. The former one comprises inclination-volition,
obligation-permission and ability while the latter has usuality and probability features.

The temporal feature indicates that the clause has a tense. For simplicity and
ease of the implementation into Parsimonious Vole, I replaced the Sydney account for
tense with that of the traditional grammar of English. The systematisation is on three
systems, that of TIME (past, present or future), PROGRESSIVITY (progressive or
non-progressive) and PERFECTIVITY (perfect or non-perfect). The Sydney account
for tense remains to be implemented in the future work.

In addition to the MOOD system network I include into the parsing process the
DEIXIS system network for the nominal groups determination depicted in Figure 4.2.
The nominal DEIXIS system network is described in detail in IFG4 in the nominal
group section (Halliday & Matthiessen 2013b: 364–396).

nominal-group DEIXIS

specific

DEIXIS-
TYPE

posessive PERSON

interactant
INTERACTANT-
TYPE

speaker

speaker-plus

addressee

non-interactant
NON-
INTERACTANT-TYPE

one-referent
ONE-
REFERENT-TYPE

non-conscious

conscious
SEX-
TYPE

male

female

plural-referent

demonstrative SELECTION
non-selective

selective
SELECTION-
TYPE

plurality
PLURALITY-
TYPE

plural

non-plural

proximity
PROXIMITY-
TYPE

near

far

DEIXIS-
MOOD

determinative

interrogative

non-specific
NON-
SPECIFIC-TYPE

total
TOTAL-
TYPE

positive-singular

positive-plural

negative

partial-selective
PARTIAL-
SELECTIVE-TYPE

partial-non-singular

partial-singular

partial-non-selective-singular

unrestricted

}

}

Fig. 4.2 The DEIXIS system network for nominal group determination (Halliday &
Matthiessen 2013b: 366)

This system network is relevant for the current work because determining the
systemic selections for the entire network can be unambiguously done based on lexical
information only. In Section 9.2, we will see a dictionary lookup method in addition to
graph pattern matching to determine systemic selections. Next is briefly described the
system network of TRANSITIVITY.
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4.2.2 TRANSITIVITY

In Section 3.2.5, I explained that SFL organises the lexico-grammar in three parallel
metafunctions. This section briefly recounts of the experiential metafunction and
introduces the TRANSITIVITY system network that systematises it.

In this perspective, “the clause construes a quantum of change in a flow of events
as a figure, or a configuration of a process, participants involved in it and any attendant
circumstance” (Halliday & Matthiessen 2013b: 212).

In traditional grammar the term transitivity refers to the property of verbs ac-
cording to which they are classified into transitive and intransitive. In SFL the term
transitivity is primarily concerned with clauses. It is most useful to refer to Halliday’s
TRANSITIVITY (Halliday 1968a, 1967, 1968b) that deals with Predicate, Subject,
Complement, and Adjunct all of which are elements of the clause and are usually
conflated with the Process, Participants and Circumstances.

The Sydney grammar makes a distinction between two types of experience: “inner”
as experience inside ourselves and “outer” as experience in the world around us. The
prototypical outer experience is that of actions and events. The inner experience is
more difficult to sort but it is a kind of reply to the outer, recording it, reflecting
on it, reacting to it, etc. Two grammatical categories that realise these two sorts of
experiences are the material process and the mental process.

In addition to material and mental there is a third kind of process used in identifying,
classifying and relating various kinds of experience. The grammatical category realising
this type of link is the relational process. Then using the combinations of the three
main processes above, Halliday defines behavioural, verbal and existential processes.

realm of experience

physical

social interaction

psychological

physical

types of processes

action

relational

mental

influential

Fig. 4.3 The connections in Cardiff grammar between realms of experience and the process
types

The Cardiff grammar employs similar process types, namely those of action, rela-
tional, mental and influential. In addition, it links these process types to realms of
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TYPE

action

relational

mental

other
environmental

influential

one-role-action
two-role-action
three-role-action

attributive
possessive
locational
directional
matching

emotion
desiderative
emotive

perception
two-role-perception
three-role-perception

cognition
two-role-cognition
three-role-cognition

starting
continuing
ceasing
succeeding
failing
causative
permissive
enabling
preventive
delaying
tentative

event-relating

PROCESS-
TYPE

ACTION-
TYPE

RELATIONAL-
TYPE

MENTAL-
TYPE

EMOTION-

PERCEPTION-
TYPE

COGNITION-
TYPE

INFLUENTIAL-
TYPE

Fig. 4.4 Cardiff TRANSITIVITY system network

experience: physical, social interaction, psychological and abstract. Figure 4.3 provides
the schematic connection between realms of experience and various process types that
can realise that kind of experience (Fawcett forthcoming: 37).

Fawcett (1973, 1987, 1996) has written the most on the TRANSITIVITY of the
Cardiff grammar. It is a model that evolved over time and is depicted in Figure 4.4 in
its latest form. The first main process type is the action. It has been called “material
process” in the past, but Fawcett returned to use the term “action” because there are
many actions that are non-material, social for instance. The second main process is
the relational one, that is subdivided into attributive, possessive, locational, directional
and matching.

The third main distinction is the mental process that is divided into emotion,
perception and cognition distinctions. Environmental processes, even if very rare, are
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recognised as another main process type. Influential processes are unique to the Cardiff
grammar and not accounted for elsewhere in the TRANSITIVITY system. The Cardiff
grammar distinguishes the following influential processes: starting, ceasing, continuing,
succeeding, failing, causative, permissive, enabling preventing, delaying and tentative.
These processes have a structural similarity, that of having an embedded event in
the matrix process, which is somehow influenced. The last process type is that of
event-relating which is also a recent development specific to the Cardiff grammar. All
the linguistic phenomena covered by this process are treated by Halliday as grammatical
metaphors, but Fawcett considered they should be analysed as a distinct process type.

The TRANSITIVITY system is highly dependent on the lexical-semantics of the
verbs. Therefore a broad account of verb senses and the participant configuration
structures they command has to be provided in the grammar. Neale (2002) has
pioneered such work in her thesis, which I introduce in the next section.

4.2.3 Process Type Database

The Process Type Database (PTDB) (Neale 2002) is the key resource in the automatic
Transitivity analysis developed in this thesis and described in Chapter 9. It is also
the source for creating the graph patterns used to enrich the constituency graph as
described in the same chapter. The PTDB provides information on what possible
process types and participants can correspond to a particular verb meaning. The
PTDB is a dictionary-like dataset of verbs bound to an exhaustive list of verb senses
and the corresponding Process Configuration for each of them.

This lexical-semantic database is comparable to the FrameNet (Fillmore 1982) and
VerbNet (Kipper-Schuler 2005; Schuler 2005) projects, which are employed for semantic
role labelling task.

In her work on PTDB Neale (2002) improved the TRANSITIVITY system of the
Cardiff Grammar by systematising over 5400 senses (and process configurations) for
2750 most common English verbs. Table 4.8 presents a simplified sample of PTDB
content.

The internal structure of the PTDB is detailed in Neale’s PhD thesis (Neale 2002:
193–231). In present thesis only three columns are of interest for the parsing purposes:
the verb form (1st), the Cardiff grammar process type (6th) and the participant role
configuration (8th). The content of these columns is not uniform and so unsuitable for
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verb form informal meaning process type configuration
calculate work out by mathematics (commission will

then calculate the number of casted votes)
cognition Ag-Cog + Ph

plan (newspaper articles were calculated to
sway reader’s opinions)

two role action Ag + Cre

catch run after and seize (a leopard unable to catch
its normal prey)

possessive Ag-Ca + Af-Pos

fall ill (did you catch a cold?) possessive Ag-Ca + Af-Pos
catch (up with) reach (Simon tried to catch up with others) two role action Ag + Ra

Table 4.8 An example of records in PTDB

parsing purposes in its original form1. The work on normalising and cleaning up the
PTDB is described in Section 9.4.

4.3 Summary
This chapter has described the grammatical units and the two system networks adopted
in this work. They constitute a selection from the Sydney and Cardiff grammars that
are implemented in the Parsimonious Vole parser.

Because of its bottom up approach to unit structure, rank scale relaxation and
accommodation of embedding as a general principle, Cardiff systemic functional theory
is more suitable for parsing than the Sydney one. Yet when it comes to grammar,
Sydney variant is more preferable as the unit definitions in the Cardiff grammar
are deeply semantic in nature. Parsing with such units requires most of the time
lexical-semantically informed decisions beyond merely syntactic variations. This is one
of the reasons why the parsing attempts by O’Donoghue (1991b) and others in the
COMMUNAL project were all based on a corpus (which is not available to the current
work).

In the present thesis the syntagmatic structures are built based on transformations
from the Stanford Dependency grammar motivated in the first chapter. Stanford
dependency relations are closely related to traditional grammar just like the Penn
part-of-speech tag set, which is integrated into the dependency graphs produced by
the Stanford parser. This is the reason to adapt in this thesis Sydney unit structures
as they are closer to traditional grammar syntax (Quirk et al. 1985), which makes the
parsing task easier.

The next chapter lays the theoretical foundations of Dependency Grammar and
introduces the Stanford dependency parser, which is used as a departing point in the

1see Neale’s page http://www.itri.brighton.ac.uk/~Amy.Neale

http://www.itri.brighton.ac.uk/~Amy.Neale
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current parsing pipeline (see Section 1.7.4). Because there is a transformation step
from dependency to systemic functional consistency structure, the next chapter also
covers a theoretical compatibility analysis and how such a transformation should in
principle look.



Chapter 5

Dependency grammar (DG)

The Stanford dependency analysis of a given text constitutes the input for the algorithm
developed in the current work. It provides the foundation to build the syntactic
backbone adopted here. The choice of Dependency Grammar was motivated in Chapter
1. This chapter offers an overview of the grammar at large and the parser developed
at Stanford University. In the last part of the chapter I discuss the cross theoretical
connection between dependency and systemic functional grammars.

5.1 Origins of dependency theory
A complete linguistic theory based on the dependency concept was first elaborated
by the French linguist Lucien Tesniere in his seminal work “Elements de syntaxe
structurale”, published in 1959 after his death. He devoted much effort to argue
for the adequacy of dependency as the organisational principle underlying numerous
phenomena and in fact attempted to demonstrate the universality of his syntactic
analysis method for human languages. In doing so he introduced a series of concepts
and ideas, among which verb centrality, stratification, language typology, nuclei, valency,
metataxis, junction and transfer are the most important ones, which I introduce
following the connections. Tesniere writes:

The sentence is an organised set, the constituent elements of which are
the words. Each word in a sentence is not isolated as it is in the dictionary.
The mind perceives connections between a word and its neighbours. The
totality of these connections forms the scaffold of the sentence. These
connections are not indicated by anything. But it is absolutely crucial that



96 Dependency grammar (DG)

they be perceived by the mind; without them the sentence would not be
intelligible (Tesniere 2015: 3).

Tesniere holds the view that the connection, what is know today as dependencies,
are the foundations of the structural syntax known as dependency grammar today.
According to him “to construct a sentence is to breathe life into an amorphous mass
of words, establishing a set of connections between them. Conversely, understanding
a sentence involves seizing upon the set of connections that unite the various words”
(Tesniere 2015: 4). He introduces the hierarchy of connections as follows:

Structural connections establish dependency relations between words. In
principle, each connection unites a superior term and an inferior term. The
superior term is called the governor, and the inferior term the subordinate.
We say that the subordinate depends on the governor and that the governor
governs the subordinate. [. . . ] A word can be both subordinate to a superior
word and governor of an inferior word. [. . . ] The set of words of a sentence
constitutes a veritable hierarchy (Tesniere 2015: 5–6).

Introduction of hierarchy and governor-subordinate dependencies defines what is a
node and the stemma resembling what is now known as a dependency tree, the only
difference being that the stemmas do not include labels on the tree edges.

[. . . ] In principle, a subordinate can only depend on a sole governor. A
governor, in contrast, can govern multiple subordinates [. . . ] Every governor
that governs one or more subordinates forms what we call a node. [. . . ] it
follows that each subordinate shares the fate of its governor (Tesniere 2015:
6).

speaks

Alfred

Fig. 5.1 Stemma for “Alfred speaks”

This asymmetry of connection permits construction of a tree-like structure. The
diagram of the two word sentence “Alfred speaks” is provided in the Figure 5.1. The
word “speaks” is the governor of the word “Alfred”. The connection is depicted by the
vertical line connecting the two. But to make it complete, it is important to decide on
the root node.
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The node formed by the governor that governs all the subordinates of a
sentence is the node of nodes, or the central node. It is at the centre of the
sentence and ensures its structural unity by tying the diverse elements into
a single bundle. It can be identified with a sentence. The node of nodes is
generally verbal [. . . ] (Tesniere 2015: 7)

The fundamental insight presented above about the nature of the syntactic structure
concerns the grouping of words at the clause level. Tesniere rejects the subject-predicate
formation that was the de facto syntactic understanding of his time. He argued that
this division belongs to Aristotelian logic and is not associated with linguistics. Instead
of the subject-predicate division Tesniere positions the verb at the root of the clause
structure making the subject and the object subordinated seedlings. Figure 5.2 depicts
the clause structure “Alfred speaks slowly”, where both the subject and the object are
subordinated to the central verb “speaks”.

speaks

Alfred slowly

Fig. 5.2 Stemma for “Alfred speaks slowly”

Tesniere is among pioneer linguists recognising that language is organised at different
levels and thus advocating a stratified model of language. He recognises two dimensional
syntactic representation and one dimensional chain of spoken language.

speaking a language involves transforming structural order to linear order,
and conversely, understanding a language involves transforming linear order
to structural order. The fundamental principle of transforming structural
order to linear order involves changing the connections of structural order
into the sequences of linear order. This transformation occurs in such a
manner that the elements connected in structural order become immediate
neighbours in the spoken chain (Tesniere 2015: 12).

In the structural realm Tesniere goes even deeper and describes the separation
between syntax and semantics. To argue for that, he uses an example similar to
the famous Chomskian colourless green ideas sleep furiously (Chomsky 1957) (that
appeared three years after Tesniere’s death). He employed the sentence the vertebral
silence antagonises the lawful sail.
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Syntax is distinct from morphology, and it is no less distinct from
semantics. The structure of a sentence is one thing, and the idea that
it expresses and that constitutes its meaning is another. It is therefore
necessary to distinguish between the structural plane and the semantic
plane. [. . . ] The structural plane and the semantic plane are therefore
entirely independent of each other from a theoretic point of view. The best
proof is that a sentence can be semantically absurd and at the same time
syntactically perfectly correct (Tesniere 2015: 33).

Tesniere distinguishes between nodes and nuclei. Initially he defines the node in a
way that resembles the phrase or a constituent but after that he changes his mind.

we define a node as a set consisting of a governor and all of the subordi-
nates that are directly or indirectly dependent on the governor and that
the governor in a sense links together into a bundle (Tesniere 2015: 6).

Later in the book, he uses the term node to mean merely a vertex and even redefines
it saying that “The node is nothing more than a geometric point whereas the nucleus is
a collection of multiple points . . . ” (Tesniere 2015: 39). It is perhaps the inconsistent
use of the terminology that has led to the assumption that dependency grammar does
not recognises phrases but the complete sub-tree of a vertex. In fact he defines the
nucleus as playing the role of both a semantic and syntactic unit:

We define the nucleus as the set which joins together, in addition to
the structural node itself, all the other elements for which the node is the
structural support, starting with the semantic elements (Tesniere 2015: 38).

A notable contribution to the field of syntax is the concept of valency used to
express combinatorial properties of verbs and other lexical items. Inspired from natural
sciences, Tesniere compares the relationship between verbs and the so-called actants
(a.k.a. arguments) to an atom’s bonds. He writes:

The verb may therefore be compared to a sort of atom, susceptible to
attracting a greater or lesser number of actants, according to the number
of bonds the verb has available to keep them as dependents. The number
of bonds a verb has constitutes what we call the verb’s valency (Tesniere
2015: 241).

Atoms are not the only metaphor he uses and next I present another regarding the
verbal node that is especially important for showing the syntax-semantics interplay.
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The verbal node, found at the centre of the majority of European lan-
guages, is a theatrical performance. Like a drama, it obligatorily involves a
process and most often actors and circumstances. [. . . ] Transferred from the
theatre to structural syntax, the process, the actors, and the circumstances
become respectively the verb, the actants, and the circumstants (Tesniere
2015: 97).

Comparison of the verb to an atom seems to emphasise connection to the syntactic
aspect of valency while comparing it to a theatrical performance seems to emphasise
the semantic properties of valency. Therefore his theory of valency has semantic
and syntactic properties. He believed that the first actant is the agent of the action,
identified as the subject in traditional grammar, and the second actant is the one that
bears the action, identified as the syntactic object. Tesniere regards both of them
as complements to complete the governor verb making, in this respect, the subject
indistinguishable from other complements.

There are some phenomena that are deemed quite problematic for dependency
grammar, namely coordination or apposition, requiring extension of the theory of
grammar with a new concept. They constitute a challenge because they are not
governor-subordinate relations but are rather orthogonal relations among siblings.
Tesniere analyses coordination, or as he calls it junction, as a phenomena used in
language to express (semantic) content efficiently.

He viewed junction as fundamentally different from subordination and represented
it with horizontal lines. Subordination is a principle of organisation on the vertical axis
whereas coordination (i.e. junction) is on the horizontal axis. Figure 5.3 depicts two
example representations for the sentence “Young boys and girls played” and “Alfred
adores cookies and detests punishments”.

played

boys and girls

young

(a) Young boys and girls played

adores and detests

Alfred cookies punishments

(b) Alfred adores cookies and detests punishments

Fig. 5.3 Sample stemmas with junction representation

A big part of Tesniere’s Elements (Tesniere 1959) is dedicated to the theory of
transfer. It describes the phenomena when one class of a syntactic unit, called source
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unit, takes the function usually devoted to another one, called target unit. One says
that the source category is (functionally) transferred into the target category. In SFL
this is called grammatical metaphor as defined in Definition 3.2.9. For example, the
noun can be transferred to an adjective by preposition “of” and modify another noun,
which is normally a function fulfilled by an adjective. For example in a linguist of
France the proper noun France is transferred by preposition “of” into of France which
modifies the noun linguist (typically an adjectival function). Transfer is a tool that
explains how for example a clause can be embedded into another one or how a verb
can be subordinate to another verb.

Tesniere divides words into function words or translatives (i.e. prepositions, conjunc-
tions, auxiliary verbs and articles) and four basic categories of content words (i.e. verbs
(I), nouns (O), adverbs (E) and adjectives (A) ). The former are empty of content and
primarily mark the transfer of content words from one syntactic category to another
one. That is, allowing one word to take a function that is generally associated with a
word of another category.

One distinguishing trait of the transfer is that the words transferred from source
to target category continue to behave as the source category with respect to their
dependants and as source category to its governor.

The transfer theory was controversial for the translators of the Elements. They
write (Tesniere 2015: liv-lx) that while the transfer schema can not be interpreted in
terms of pure dependency, it is debatable whether it can be interpreted in terms of
constituency. The main distinction is in the number of nodes that one assumes to be
in the syntactic structure, i.e. whether there are intermediary “virtual” nodes.

XP

X Y
(a) Headed endocentric

YP

X Y
(b) Headed endocentric

ZP

X Y
(c) Non-headed exocentric

Fig. 5.4 Constituency structure

Figure 5.4 shows how a sequence of two elements of classes X and Y can be
represented in terms of constituency forming a “virtual” phrase node P. Here Figures
5.4a and 5.4b represent that one element governs the other. Such structures are called
endocentric because the phrase class information is provided from within. In Figure 5.4c
is represented a non-headed structure called exocentric because the class information
is decided based on criteria independent of X and Y.
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X

Y
(a) Headed endocentric

Y

X
(b) Headed endocentric

∅

(c) Non-headed exocentric

Fig. 5.5 Dependency structure

The same situation for the elements X and Y can be expressed in terms of dependency
structures. One consequence is that only headed structures can be represented. Figure
5.5 shows that non-headed structures cannot be represented. Hence there is no
correspondent dependency representation to Figure 5.4c in Figure 5.5c. Another
consequence is that there is no need for “virtual” phrase nodes and the concept of
exocentricity vanishes completely.

Bringing back the discussion on the number of nodes, the constituency structure
requires three nodes each time whereas dependency structure requires only two. In
this sense the transfer schemes provided by Tesniere in his Elements (Tesniere 1959)
resemble constituency structure more than dependency structure simply because it
assumes more nodes than words.

5.2 Evolution into modern dependency theory
Nowadays dependency theory has evolved and differs from the original one presented
by Tesniere. At the time the original text was written there was no such distinction
as dependency and constituency structures and Tesniere’s Elements (Tesniere 1959)
in fact contains descriptions of and references to what may nowadays be considered
constituency. Next I present which of the initial ideas did not take hold, were not
addressed or merely assumed and instead have evolved into the modern dependency
theory of grammar.

5.2.1 Definition of dependency

Tesniere’s definition of dependency is not falsifiable. His mentalist approach that
“the mind perceives connections between the word and its neighbours” (Tesniere 2015:
3) makes it impossible to falsify his choices hence leaving no means to validate one
choice over the other ones. One may argue that such a mentalist approach may not be
unrealistic provided the existence of a considerable volume of data from psychological
experiments. So far, however, there are no known datasets reflecting a mentalist
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grounding of the dependency relations and so I resort to other definitions provided
below.

One way to define dependency relations and structure is by employing the con-
stituency concept. There are efforts by Bloomfield (1933), Hockett (1958) and Harris
(1951) in constituency grammar to identify constituents using tests that shed light on
which segments should hold together as phrases or whether they should be considered
constituents at all. One needs to decide within a constituent which word heads which
other words. This means deciding which word controls the distribution of elements in
that constituent (Bloomfield 1933; Zwicky 1985). A word Y depends on a word X if
and only if Y heads a phrase which is an immediate constituent of the phrase headed
by X (Lecerf 1961).

Another way to define dependencies, avoiding constituency, is by using combinations
of two words as proposed by Garde (1977) and Mel’čuk (1988). To discern which word
governs the other, one must describe which word determined the distribution of the
two words taken together. This way the governor is the word that determines the
environment in which the two together can appear (Tesniere 2015: lxi). In fact, the
word notion is not necessary to define dependency, it can be abstracted away to the
notion of syntactic units. As soon as two units combine one can posit dependency
between them whereby the dependency structure is the set of dependencies between the
most granular syntactic units (Gerdes & Kahane 2013). This approach is the modern
widely adopted way of defining dependencies.

In addition Tesniere did not make distinctions between the dependency types. As
discussed in the previous section, he had noticed that there is a difference between
syntactic and semantic dependencies and that the former generally correspond to the
latter but not as a strict rule and even some other times the correspondence is in the
opposite direction, e.g. “the stone freezes” vs. “the frozen stone”. Dependency based
semantic representations have been around since the 1960s in the form of semantic
networks (Mel’čuk 1988; Žolkovskij & Mel’čuk 1967) and conceptual graphs (Schank
1969; Sowa 1976).

5.2.2 Grammatical function

In modern linguistics the notion of grammatical functions (e.g. subject, object, deter-
miner etc.) are attached to the notion of syntactic dependency. They are in fact an
essential account in modern dependency-based approaches because they are the only
way to distinguish between various roles the dependents play in relation to their gover-
nors. The grammatical functions attached to the dependency relations are primitives
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of these dependency grammars. This is not the case for Chomskian phrase structure
constituency where the functions are derived from the structural configurations. Nev-
ertheless in constituency models such as Lexical Functional Grammars (Bresnan et al.
2015) and Head-Driven Phrase Structure (Pollard & Sag 1994) grammatical functions
have been introduced as grammatical primitives.

Grammatical functions were not important in Tesniere’s theory. He mentioned
only, in the context of valency theory, three actant functions called first, second and
third, the other verb dependants being circumstantial. Most dependency grammars
assume dozens of functions to offer a fine-grained syntactic characterisation of language
based on distinguishable syntactic properties. This way two elements have the same
grammatical function if and only if they have the same markers, order (linear position),
agreement properties and distribution. Several grammatical function sets have been
developed in the fields of formal dependency grammars, parsers and tree-banks. The
most important ones for English are the ones of Mel’čuk & Pertsov (1986), of Johnson
& Fillmore (2000) and of Marneffe & Manning (2008a,b). In this thesis the latter is
employed as it is part of the Stanford dependency parser described later in this chapter.

5.2.3 Projectivity

Central to how word order is accounted for in dependency grammar is projectivity. It is
not present in the Elements but it is the basis for identifying long-distance dependencies,
also known as discontinuities or gapping. The concept is introduced by Lecerf (1961)
following publication of the Elements (Tesniere 1959). It is defined in terms of crossing
lines when drawing dependency trees. The trees that do not contain crossing lines
are called projective and the trees with crossing lines are called non-projective, i.e.
violating the projection principle.

did

Tesniere not identify

concept

the projectivity

didTesniere not identify concept.the projectivity

Fig. 5.6 Projective tree
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did

Tesniere not identify

What

did Tesniere not identify?What

Fig. 5.7 Non-projective tree

To illustrate this principle consider Figure 5.6, where there are no crossing lines,
and Figure 5.7 contains a projectivity violation because the word “what” is connected
to its governor “identify” crossing three dashed projection lines. Linguistic phenom-
ena involving non-projecting trees are: wh-fronting, topicalisation, scrambling, and
extrapolation.

5.2.4 Function words

Tesniere’s transfer theory, despite it’s insightfulness, has little if any application in
modern dependency grammar. The main reason is the implications it has for hierarchical
structures. Transfer theory deprives the translatives (prepositions, auxiliary verbs,
sub-ordinators and conjunctions) of their autonomy in the dependency tree, giving
them a secondary status. As a consequence, they cannot be constitutive elements of
a nucleus. The issue is reduced to the hierarchical status of such translatives as to
whether they gain node status or not. I exemplify this below.

has departed

Tom
(a)

has

Tom departed

(b)

departed

Tom has
(c)

Fig. 5.8 Possible analysis representation for “Tom has departed”

Figure 5.8 represents three possible ways to analyse the word “has” in “Tom has
departed”. In Figure 5.8a the original approach Tesniere proposed is represented using
transfer schema where the word “has” is enclosed within the full verb node “departed”.
The two together are granted the status of a dissociated nucleus, which means that
neither alone can form a nucleus. In contrast, in Figure 5.8b and 5.8c the auxiliary “has”
is granted autonomy and corresponds to what many modern grammars assume insofar.
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The important thing to acknowledge here is that syntactic autonomy is conferred on
the translatives contrary to what Tesniere originally proposed.

As we will see in the next section, the Stanford dependency schema (Marneffe &
Manning 2008a,b) adopts content words as governors for the function words. This
corresponds to the representation in Figure 5.8c. As a consequence the path between
content words is shorter and uninterrupted yielding benefits in many applications.

Moreover, as we will see in Section 5.4, the Stanford dependency grammar develops
further this concept and provides an additional “collapsed” schema where the function
words are suffixed to the grammatical functions. For example, in “Bob and Jacob”
there is a “conj” dependency relation between Jacob and Bob and a “cc” relation
between “and” and “Bob”. In the collapsed form the relation becomes “conj:and”
between Jacob and Bob integrating the conjunction into the relation name. This is
the case for prepositions and conjunctives whereas auxiliary verbs remain nodes in the
collapsed form.

5.3 Dependency grammar in automated text pro-
cessing

Tesniere had no intention of providing a computational theory of grammar and he was
not aware that ideas he was proposing have such potential. Shortly after his death,
inspired by Chomsky’s Syntactic Structure (Chomsky 1957), Hays (1960, 1964) made
the first attempts to formalise dependency grammar with the intention to apply it to
automated text processing. A year later his colleague Gaifman (1965) showed that the
dependency grammar formalism proposed by Hays is equivalent to Chomsky’s context
free grammar and to categorial grammars proposed by Bar-Hillel (1953).

Outshone by Chomskyan grammars, serious developments in parsing with depen-
dency grammars did not come into being until the mid 1990s. A first efficient parser
with a dependency-based model, called Link Grammar, was created by Sleator &
Temperley (1995) and ten years later dependency parsing gained in popularity further
yielding remarkable results such as the MaltParser (Nivre 2006; Nivre et al. 2007b),
MATE parser (Bohnet 2010) and the early Stanford parser (Marneffe et al. 2006)
that was generating dependency trees from phrase structure trees. A summary of
dependency parsing techniques is provided by Kübler et al. (2009).

In parallel to parsers, large annotated corpora and treebanks have been developed
for parser training and testing and are suitable as well for theoretical applications. A
treebank is a collection of records consisting of natural language sentences associated
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with corresponding syntax trees (using a specific grammatical model) and optionally
additional annotations such as part of speech tags, named entities, and other anno-
tations. The first treebank was the Penn Treebank (Marcus et al. 1993; Santorini
1990), which is a constituency-base treebank. A well known dependency treebank is
the Prague Dependency Treebank (Böhmová et al. 2003; Hajic et al. 2001), originally
created for Czech but now including English as well.

Recently an initiative to create a Universal Dependency model (Nivre 2015) started.
The aim is to create uniform language independent dependency grammar. This
initiative is extended by efforts to create multilingual treebanks using the the universal
dependency scheme (Nivre et al. 2016). Version 2.3 of the Universal dependencies
grammar model has been released1 in association with 129 treebanks in 79 languages.
These efforts continue today.

Before arriving at the now broadly accepted Universal Dependency framework, early
dependency grammars were quite diverse. The schemes more often were developed
in the context of corpus annotation. An early work (Carroll et al. 1998) towards
unification was conducted within the Grammar Evaluation Interest Group (Harrison
et al. 1991), also known as the PARSEVAL initiative, originally aimed at constituency
parsers. Carroll et al. (1999) proposed an application-independent corpus annotation
scheme (see Figure 5.9) specifying the syntactic dependency holding between each head
and its dependent(s) that took into account language phenomena in English, Italian,
French and German.

dependent

mod arg_mod arg

ncmod xmod cmod

subj

subj_or_dobj

comp

ncsubj xsubj csubj obj clausal

dobj obj2 iobj xcomp ccomp

Fig. 5.9 The grammatical relations (GR) hierarchy from Carroll et al. (1999)

1see https://universaldependencies.org/

https://universaldependencies.org/


5.4 Stanford dependency model 107

In the early 2000s the existing treebanks were still inadequate for evaluating the
predicate-argument structure of English clauses. To address this problem, the PARC
700 treebank (King & Crouch 2003) was created by randomly extracting 700 sentences
from the Penn treebank, parsing with a Lexical Functional Grammar (LFG), and
converting into dependency relations manually corrected by human validators. This
scheme has played a role in the creation of the Stanford dependency model that I detail
below.

One convenient feature of dependency representations is that they can be encoded
in a tabular format such as CoNLL (Nivre et al. 2007a), which is now adopted as
a standard representation. It is employed in a recurring open competition called
the “CoNLL shared task” launched for improving and innovating dependency parsing
methods. The most notable are the ones from 2006 on dependency parsing (Buchholz
& Marsi 2006) followed in 2007 with a track for multilingual and one for domain specific
dependency parsing. By 2017 (Zeman et al. 2017) the task was parsing from raw text
(as previous ones were lemmatised and annotated with part of speech information) into
universal dependency representation.

5.4 Stanford dependency model
Dependency descriptions are functional in nature and this is precisely the aspect which
makes possible the beneficial link between the Stanford Dependency Grammar and the
Systemic Functional structures targeted in the current thesis.

The Stanford parser is one of the leaders in the domain of dependency parsing.
Between 2006 and 2015 Stanford parser (Marneffe et al. 2006) implemented the Stanford
dependency model for English (and a few other languages). Then in 2016 Nivre et al.
(2016) proposed the language independent Universal Dependency scheme which was
afterwards integrated into the Stanford Parser. Around 2015-2016 the Parsimonious
Vole parser was developed based on the Stanford dependency model. No transition
to universal dependency was considered at that time because neither the scheme was
not mature and stable enough. For this reason, the current thesis employs the legacy
Stanford grammar, which I present in this section. A transition to universal dependency
model is considered for future work.

The design of the Stanford dependency set (Marneffe et al. 2014, 2006; Marneffe &
Manning 2008a; Silveira et al. 2014) bears a strong intellectual debt to the framework
of Lexical Functional Grammars (Bresnan et al. 2015) from which many relations
were adopted. Marneffe et al. (2006) departs from the relation typology described
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in Carroll et al. (1999) which was employed in the PARSEVAL initiative (Harrison
et al. 1991) and from the grammatical relations of the PARC 700 (King & Crouch
2003) scheme following a style of Lexical Functional Grammar. Marneffe arranges the
grammatical relations into a hierarchy rooted in a generic relation dependent. This
is then classified into a more fine-grained set of relations that may hold between a
head and its dependent following the set of principles (Marneffe & Manning 2008b)
stipulated in Generalisation 5.4.1.

Generalisation 5.4.1 (Design principles for the Stanford dependency set).

1. Everything is represented uniformly as binary relations over pairs of words.

2. Relations should be semantically contentful and useful to NLP applications.

3. Where possible, relations should use the notions of traditional grammar (Quirk
et al. 1985) for easier comprehension by users.

4. To deal with text complexities, underspecified relations should be available.

5. When possible, content words shall be connected directly, not indirectly mediated
by function words (prepositions, conjunctions, auxiliaries, etc.).

When motivating this approach to schema development, Marneffe et al. (2006) insist
on practical rather than theoretical concerns, proposing that structural configurations
be defined as grammatical roles (to be read as grammatical functions) (Marneffe
et al. 2006). In the Chomskian tradition (Chomsky 1957) the grammatical relations
are defined structurally as configurations of phrase structure. Other theories, such
as Lexical-Functional Grammar, reject the adequacy of such an approach (Bresnan
et al. 2015) and advocate a functional representation for syntax. Following the latter
approach, Marneffe insists that information about functional dependencies between
words is very important and should be explicitly available in the dependency tree.

The advantage of explicit relations is that the predicate-argument relations are
readily available as edge labels in the dependency structure and can be used off the
shelf for real world applications, which was an important goal in the schema design.
The grammar had to be suitable for parsing within the context of syntactic pattern
learning (Snow et al. 2005), relation extraction, machine translation, question answering
and inference rule discovering (Lin & Pantel 2001), domain specific parsing (Clegg
& Shepherd 2007), and others. The complete set of dependency relations adopted is
given in Appendix B.
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5.5 Stanford dependency representation
The Stanford Dependency Parser generates four types of dependency representations.
It produces parse trees with basic dependencies, collapsed dependencies and collapsed
dependencies with propagation of conjunct that are not necessarily a tree structure, and
finally the collapsed dependencies that preserve a tree structure. The variant employed
in the current work is the collapsed dependencies with propagation of conjunct. This
structure concerns preposition, conjunction and relative clause referent nodes, and is
generated by a series of transformations after the initial basic dependency parse is
ready.

For example, consider the fragment “based in Luxembourg”. In basic dependency
representation, such as is shown in Figure 5.10a, the function words govern the
content words and thus there is a preposition (prep) edge from “based” to a dependent
preposition “in” from which continues a preposition object edge (pobj) to “Luxembourg”.
In the collapsed dependency representation the relation sequences of the type “prep-
pobj” are replaced by a direct edge between the two content words labelled with
the “prep” function concatenated with the intermediary preposition as can be seen in
Figure 5.10b. There is a single relation between “based” and “Luxembourg” labelled
“prep_in”. Similar transformations are done for conjunctions.

based in Luxembourg
prep pobj

(a) Basic (uncollapsed) preposition depen-
dency

based in Luxembourg

prep_in

(b) Collapsed preposition dependency

Fig. 5.10 Function words in the Stanford dependency model

Besides collapsing prepositions and conjunctions, the dependency structure is further
processed to introduce more relations even if they break the tree structure. Relative
clauses are such a case where the tree structure is broken. Consider Figure 5.11a where
the relative clause is introduced by a relative clause modifier relation (rcmod) from
the noun “Nina” to the main verb of the relative clause “coming”. The clause contains
an interrogative pronoun “who” functioning as nominal subject (nsubj) and which
anaphorically resolves to the clause governor “Nina”. This sort of information about
the antecedent of the relative clause is also introduced in the collapsed dependency
representation. And thus, as depicted in Figure 5.11b, a new referent relation is added
connecting “Nina” to the subordinate subject “who” of the relative clause.
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Nina, who is coming tomorrow

rcmod

nsubj

aux tmod

(a) Basic (uncollapsed) relative clause

Nina, who is coming tomorrow

rcmod

ref

nsubj

aux tmod

(b) Collapsed relative clause

Fig. 5.11 Relative clause in Stanford dependency model

There are other language phenomena similar to relative clauses that break the tree
structure in the collapsed dependency representation by introducing either cycles or
nodes with multiple governors. This is the reason why often in this thesis the references
are to dependency graphs and not trees. In fact the fundamental assumption here
is that the dependency structures are graphs with a root node. I further develop
this assumption in Chapter 7. Nevertheless additional or direct relations between
content words (moving accounts of the function words into the graph edges) increase
the usability of the dependency graphs for various purposes, including the present
parse method which is detailed in Chapter 8.

5.6 Cross theoretical bridge from DG to SFG
This section aims at establishing cross-theoretical links between the Dependency theory
of grammar and the Systemic Functional theory of grammar. This cross-theoretical
bridge is necessary as a fundamental principle for further deriving transformation rules
from a dependency representation into a systemic functional one. Such rules are then
enacted in the parsing pipeline for creating the systemic constituency structure which
is the aim of this thesis and is detailed in Chapter 8.

Let’s recap what dependency relations are in Dependency theory and in Systemic
Functional theory of grammar. In the Dependency theory of grammar, as we saw
in Section 5.1, the dependency relations are conceptualised as connections between
neighbouring words that stand in governor (superior) and subordinate (inferior) relations
to each other, also referred here as parent-child relations.

In SFL the concept of dependency is less salient than the foundational role it plays
in Dependency theory. Dependency relations are regarded as orthogonal relations
between sibling elements of a unit (Figure 5.13b) and link heads to their modifiers in
Hallidayan logical structure (Halliday & Matthiessen 2013b: 388), which was discussed
in Section 3.4.1. The reason why the elements are siblings and not subordinated is due
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to a componence-based conceptualisation of the unit structure (see Section 3.3.4) as a
part-whole linearly ordered set of elements. In SFL, componence, together with filling,
embedding and expounding are constituency relations. In this view subordination is
replaced by the componence relation between the element and the unit it is part of and
hence makes the elements siblings of equal status. Yet one element, the head, plays a
special pivotal role for the unit (defined in Section 3.3.2 and discussed in Section 3.4.5)
that, in the Sydney grammar, is the Head/Thing, or Head, Apex, Main Verb, etc. in
the Cardiff grammar.

(48) The witness seemed quite convincing.

Consider Example 48 whose representation as a dependency structure is depicted
in Figure 5.12 and as a Systemic Functional constituency structure in Table 5.1. In
Figure 5.12 the structure starts with a root node “seemed” from which two relations
emerge: subject (nsubj) to “witness” and an open clausal complement (xcomp) to
“convincing”.

DT NN VBD RB JJ
The witness seemed quite convincing

nsubjdet

xcomp

advmod

Fig. 5.12 Dependency representation

The witness seemed quite convincing
clause

Subject Main Verb Complement
nominal group verb adjectival group

Deictic Head Temperer Apex
determiner noun adverb adjective

Table 5.1 Example of head-modifier sibling dependency

In Table 5.1, the corresponding structure is a root clause unit composed of three
elements: a Subject, a Main Verb and a Complement. The Main Verb is the pivotal
element heading the clause unit, which means that inconspicuous dependency relations
hold from the Main Verb to the Subject and to the Complement. The Subject and
Complement are filled by a nominal and, correspondingly, an adjectival group, whereas
the Main Verb Element is expounded with a verb item “seemed”. This observation is
expressed in generic terms by Generalisation 5.6.1.
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Next, in Figure 5.12, the determiner relation (det) between “witness” and “the” is
similar to the “subj” holding between a governor and a subordinate. The corresponding
constituency structure is that of a nominal group unit with a Head and a Deictic
element. One exception, though, is that the governor also functions as subordinate
in another relation and thus has an incoming edge. This dual role of a node has far
reaching consequences in the constituency structure. Having an incoming dependency
relation corresponds, in constituency structure, to the filling relation between an
element of a unit and the unit of the rank next below. Here, the node “witness”, acting
as a subordinate to the “seemed” node, fills the Subject element of the clause. In fact,
the dependency node “seemed” projects into constituency structure the expounding
relation between the lexical item and the element of the clause.

In a nutshell, what we see is that the parent-child dependency relations in Depen-
dency structure unpacks into multiple relations in the Systemic Functional structure:
the componence relation between unit and element, the filling relation between elements
and units of the lower rank, the identification of the head of a unit element (a.k.a. the
pivotal element) and, the (indirect) sibling head-modifier relation.

On the other hand, if we focus on the underlying plain dependency relations between
head and dependent we can notice a perfect isomorphism between the two structures.
To illustrate this lets reduce the node labels to “head” and “dep” which will correspond,
in the dependency representation, to parent (governor) and daughter (subordinate),
and in constituency representation, to head and modifier siblings.

dep/headdep head dep dep/head

(a) Parent-child relations

head

head

head

modifier modifier

modifiermodifier

(b) Sibling head-modifier relations

Fig. 5.13 Plain dependency relations in Dependency and Systemic Functional representation

Figure 5.13 illustrates side by side the parent-child and sibling dependency relations
in a simplified form. In Figure 5.13a, dependencies are the only relations between
the units of structure, whereas in Figure 5.13b, there are two levels (ranks) of units
where the dependency relations are relevant only between sibling elements at the same
level within the structure of a unit. As we have seen in Chapter 3, knowing only
the unit elements is not enough to construct the constituency structure, but it is
informative enough for deducing the missing parts. What Figure 5.13 illustrates is
that the two structures resemble each other in a suggestive fashion that will be used
below to construct a bridge between descriptions.
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The intuitions from the above examples can be laid out by and large in Gener-
alisations 5.6.1 – 5.6.3. Here I use the term projection to refer specifically to the
correspondences between theoretical primitives of the two grammars. We say that a
primitive in theory A is projected as another primitive in theory B. In this case the
considered projections are from the Dependency theory of grammar into the Systemic
Functional theory of grammar. The first generalisation is on maximally accounting for
the dependency nodes in constituency structure.

Generalisation 5.6.1 (Structural Completeness). Each node of the dependency
representation is projected, in the constituency representation, into one or more units
and one or more elements at different rank scales.

When translated to a constituency unit, the dependency node stands for a unit as
a whole, the head element of that unit and the word expounding that element. For
example, the root verb “seemed” in a dependency graph corresponds to the clause
node and, the Main Verb element and the lexical item which fills the Main Verb of the
clause. By analogy, the node “witness” stands for the nominal group, the head noun
of a Nominal Group and fills the head element of the group. Even functional words
such as prepositions that in collapsed dependency representation remain orphaned (see
Figure 5.10b) have to be accounted for in the constituency structure.

Generalisation 5.6.2 (Functional Projection). Each dependency relation (alone or
contextualised by the word classes of the related nodes) is projected into the element
of the unit corresponding to the subordinate node.

Generalisation 5.6.2 means that a dependency relation, in a dependency graph, is
primarily responsible for determining the choice of a unit in the systemic functional
constituency structure. For example the “nsubj” dependency relation will be projected
into a Subject element of a clause unit. Sometimes however, as stated in Generalisation
5.6.2, the dependency relation alone is not enough and the context given by the governor
and subordinate nodes is needed to choose the element. For example the adverbial
modifier (advmod) relation alone is not enough to determine into which element to
project the subordinate. If the word class context is considered then, in Figure 5.14,
the verb-to-adverb “advmod” relation (VB-advmod-RB) is projected into an Adjunct
while the adjective-to-adverb “advmod” relation (JJ-advmod-RB) is projected into
Temperer.



114 Dependency grammar (DG)

DT RB JJ NN VBD RB VBN JJ NN
The very swift fox was first seen last month

det

amodadvmod

nsubj

auxpass

advmod

tmod

amod

root

Fig. 5.14 The “advmod” relation in different word class contexts

Generalisation 5.6.3 (Substantial Projection). Each dependency node projects
either the filling or expounding of an element, by a unit of the rank below or by the
lexical item of the node.

Generalisation 5.6.3 provides the link between the projected unit and the element
of the rank above. For example, let’s return to analysis from Figure 5.12 and Table 5.1.
There the node “witness” subordinate to the node “seemed” by the “nsubj” relation
(nominal subject) is responsible for projecting the class of the unit filling Subject
element of the clause. The projected class into the Subject element is that of nominal
group headed by the “witness” node because it is the governor (of the node “the”).
The governor “seemed”, as the root of the tree, is projected into a lexical item which
expounds the Main Verb - the pivotal element of the clause. In a similar manner,
the determiner (det) relation from the governor “witness” to the subordinate “the” is
projected into a lexical item expounding the Head element (of the nominal group).

some very small wooden ones
nominal group

Quantifying Determiner Epithet Classifier Head
quality group

Temperer Apex
Table 5.2 SF analysis of Example 22 (reproduced from Table 3.5 )

DT RB JJ JJ NNS
some very small wooden ones

det

advmod

amod

amod

Fig. 5.15 Dependency analysis for Table 5.2
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Figure 5.15 and Table 5.2 represent the analysis of a nominal group from Example 22
(“some very small wooden ones”) in SFG and the Stanford dependency grammar, and
serve as a second example for Generalisation 5.6.3. Consider the dependency relation
“det” acting as a link between the noun “ones” and the determiner “some”. When
translated into the SF variant the dependency relation stands within the nominal group
between the Head element (filled by word “ones”) and the Quantifying Determiner
element (filled by the word “some”). As mentioned earlier, all the elements in a unit
are equal in the structure so the Head and Quantifying Determiner are siblings. So
the items (words) filling those elements are also siblings. How then is the dependency
relation established?

Lets look at a another example of two consecutive relations, the “advmod” from
“small” to “very” and “amod” from “ones” to “small” in Figure 5.15. The interesting
case here is the item “small” which is the head (Apex) of the quality group. It anchors
the meaning of the whole group and the quality group fills the Modifier/Epithet element
within the nominal group. What is not covered in the previous example is that the
Apex “small” not only is a representative of the entire group but it is also suitable
filler on its own for the Epithet (Modifier) element within the nominal group. Using a
similar translation mechanism as above, this means that, the incoming dependency
needs to be unpacked into three levels: the Epithet (Modifier) element within the
current group, the unit class that element is filling (quality group) and finally the
pivotal element, i.e. Apex (Head), of the filler group. In fact, to be absolutely correct
there is one more level: the elements of a unit are expounded by lexical items, so a
fourth relation to unpack is the expounding of the Apex by the word “small”.

I have just described how the dependency relation in dependency structure (Figure
5.13a) can be unpacked into compounding elements of a unit (Figure 5.13b) correspond-
ing to the sibling dependency considered as an indirect relation between the Head and
the Modifier (in the Logical metafunction); and then from that, using Generalisations
5.6.1 – 5.6.3, deduce the rest of the constituency structure such as the componence
relation between unit head and the compounding elements and the filling/expounding
relation between the element and the unit below.

The projection from dependency grammar into systemic functional grammar is
implemented as a traversal of the dependency graphs and creation in parallel of a
systemic functional constituency structure. To achieve in practice the above mentioned
level of unpacking (of the dependency relations and their context) two traversals are
needed: a bottom-up and a top-down one. This is because the traversal sequence also
creates a context that deals with either instantiation of a new unit and establishing
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its elements or with filling an element of a unit above. More on how to enact the
cross-theoretical links described this chapter will be provided in Section 8.3.

As motivated elsewhere, I will present an account for the unrealised, covert (Null)
elements in syntactic structure, using the Government and Binding Theory. This will
also be subjected to a similar cross-theoretical projection discussion giving formalisation
and implementation descriptions.



Chapter 6

Government and Binding Theory
(GBT)

Transitivity analysis in SFL is similar to what semantic role labelling, thematic or θ

role analysis means in several other theories. This thesis provides, in Chapter 9, an
account of how to perform SF Transitivity parsing resulting in a configuration of a
process, participants and circumstances. For an illustration take Example 49 whose
Transitivity analysis is given in Table 6.1. Here the entire clause is analysed as a
Possessive configuration governed by the verb “receive” where “Albert” plays the role
of the Affected-Carrier and “a phone call” is the thing being Possessed. Note that,
for brevity, in this section, the box analysis such as that from Table 6.1 is simplified
omitting the unit classes and providing the functional elements only.

(49) Albert received a phone call.

(50) He asked to go home immediately.

Albert received a phone call
Possessive configuration

Affected Carrier Process Possessed
Table 6.1 Transitivity analysis with Cardiff grammar of Example 49

Example 50 is slightly more complex and illustrates the main motivation behind
the current chapter. It is analysed in Table 6.2, according to the Cardiff grammar, as
a Three Role Cognition configuration with “ask” being the process, “he” the Agent
and “to go home immediately” the cognised Phenomenon. The Phenomenon is filled
by a non-finite clause “to go home immediately” which is, in the Transitivity account,
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a Directional configuration governed by the verb “go” and has as participants the
Destination “home” and the Agent Carrier in an empty Subject position that is said
to be non-realised, empty, or covert. This is a case when the empty constituent is
recoverable from the clause above and corresponds to the Subject “He”. This way,
the constituent “He” plays two roles: first as Agent in the Cognition process of the
top clause and second as Agent Carrier in the Directional process of the embedded
clause. In this work, the way to assign a second role coming from the lower clause is
by detecting and making explicit the empty constituents and resolving them locally
with a link to the corresponding antecedent constituent.

He asked [empty subject] to go home immediately
Three Role Cognition configuration

Agent Process Phenomena
Directional Configuration

Agent-Carrier Process Destination
Table 6.2 Transitivity analysis with Cardiff grammar of Example 50

In language there are various cases where constituents are empty but recoverable
from the immediate vicinity relying in most cases on syntactic means although in a few
cases additional lexical-semantic resources are required. The mechanisms of detecting
and resolving the empty constituents are captured in Government and Binding Theory
(GBT) developed in Chomsky (1981, 1982, 1986) and are based on phrase structure
grammar. GBT explains how some constituents can move from one place to another,
where the places of non-overt constituents are and what constituents they refer to i.e.
what are their antecedents.

The GBT approach explains grammatical phenomena using phrase structures (PS).
This is more distant from SFG than the approach taken by the dependency grammar.
Section 6.2 briefly introduces the theoretical context of GBT and then formulates the
principles and generalisations relevant for the current work. Then Section 6.3 translates
the introduced principles and generalisations into Dependency Grammar rules and
patterns. To lay the ground for these two sections, I first place GBT into the context
of transformational grammar and introduce the basic concepts.

6.1 Introduction to GBT
This section is set as as introduction to the fundamental concepts from Government
and Binding Theory. GBT belongs to the family of Transformational grammars
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(TG) or transformational-generative grammars (TGG). It is part of the theory of
generative grammar that considers grammar to be a system of rules that generate exactly
those combinations of words which form grammatical sentences in a given language
(Chomsky 1965). TG involves the use of defined operations called transformations to
produce new sentences from existing ones.

Chomsky developed a formal theory of grammar (Chomsky 1956) where transforma-
tions manipulated not just the surface strings, but the parse tree associated with them,
making transformational grammar a system of tree automata (Stockwell et al. 1973).

A transformational-generative (or simply transformational) grammar thus involved
two types of production rules: phrase structure rules, such as “S -> NP VP” (meaning
that a sentence may consist of a noun phrase followed by a verb phrase) etc., which
could be used to generate grammatical sentences with associated parse trees (phrase
markers, or P markers); and transformational rules, such as rules for converting
statements to questions or active to passive voice, which acted on the phrase markers
to produce further grammatically correct sentences (Bach 1966: 59-66). This notion
of transformation proved adequate for subsequent versions including the “extended”,
“revised extended” and Government-Binding (GB) versions of generative grammar,
but is no longer compatible with the latest “minimalist” grammar (Chomsky 1993a),
which for example disposes of the concept of government. The minimalist programme
introduces a set of formal definitions that go beyond tree manipulation. For the purpose
of the current work, however, GBT employing the idea of transformations is perfectly
suitable. I selected it because of clear and extensive descriptions of the mechanisms for
identification of null elements (also known as empty categories) and how to provide
them with an interpretation.

6.1.1 Phrase structure

The notion of structure in a generative grammar refers to the way words are combined
together to form phrases and sentences. Merging is the technical term used in GBT for
the operation of bringing two words together into a phrase. In this operation one word
will always be more prominent and is therefore called the head of the phrase. The
resulting combination is a new constituent and is called a projection of the head. This
is known as X-bar theory (Jackendoff 1977), often denoted as X ′ or X̄, and embodies
two primary claims: (a) that phrases may contain intermediary constituents projected
from a head X and (b) that this system of projected constituency may be common to
more than one category (such as N, V, A, P etc.).



120 Government and Binding Theory (GBT)

These combinations of words and projections can be represented using labelled
bracketing notation where the labels denote constituent categories. The bracketed
notation is a representation equivalent to a hierarchical tree of constituent parts or
parse tree (also known as syntactic tree, phrase structure, derivation tree). The parse
tree represents the syntactic structure of a string according to some grammar. The
equivalence between a bracketed notation and parse tree is exemplified in the following
two representations of example 51 from (Haegeman 1991b: 83).

(51) Poirot will abandon the investigation.

(52)


S

[
NP

[
N

Poirot
]][

AUX
will

][
V P

[
V

abandon
][

NP

[
Det

the
][

N
investigation

]]]

S

VP

NP

N

investigation

Det

the

V

abandon

AUX

will

NP

N

Poirot

Fig. 6.1 The parse tree of Example 51 from Haegeman (1991b: 83)

A node is said to be non-branching if there is a single line starting below and it
is called branching if there is more than one line going downwards. The children of
a branching node are said to be bound by a sisterhood relation and in relation to a
parent or mother node. In a phrase structure the vertical relations are referred to
dominance relations defined below.

Definition 6.1.1 (Dominance). Node A dominates node B if and only if A is higher
up in the tree than B and if you can trace a line from A to B going only downwards
(Haegeman 1991b: 85).

Looking at the tree diagram along the horizontal axis, GBT describes left-to-right
ordering of constituents using the linear precedence relation.

Definition 6.1.2 (Precedence). Node A precedes node B if and only if A is to the
left of B and neither A dominates B nor B dominates A (Haegeman 1991b: 85).
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In Figure 6.1 NP, AUX and VP nodes are sisters, they precede one another and
are dominated by the S parent node. A more specific type of dominance, that will
be employed later in this chapter, is immediate dominance, which is when there is no
intermediary node between A and B. In this case, the node “Poirot” is also dominated
by S but only the grandparent NP is immediately dominated by S. The same holds for
precedence: the immediate precedence is when a node A precedes a node B and there is
no intervening node in between. Node NP precedes VP but only AUX is immediately
preceded.

Generalisation 6.1.1 (Projection principle). Lexical information is syntactically
represented.

S

VP

NP

this afternoon

V̄

PP

in the garden shed

V̄

NP

the letters

V

read

AUX

will

NP

Miss Marple

Fig. 6.2 Example of projections from Haegeman (1991b: 90)

An important principle in GBT is that of projection formulated in Generalisation
6.1.1. For example in Figure 6.2, projections of V that are dominated by more
comprehensive projections of V are called intermediate projections while the node
labelled VP is the maximal projection of V. Maximal projections are also barriers to
government (see Definition 6.1.5 below). The role of the lexicon in syntax from GBT
perspective is discussed at length in Stowell & Wehrli (1992).

6.1.2 Theta theory

This section introduces which constituents are minimally required to form a sentence
and why. Traditionally three types of verbs are recognised: transitive, di-transitive and
intransitive. This distinction is based on how many complements a verb requires to
form a minimal complete sentence. If a verb is transitive then one NP direct object is
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required. If the verb is di-transitive then two NP or one NP and one PP direct and
indirect objects are required. Finally, if it is intransitive then no NP complement is
allowed.

Logicians for a long time have been concerned with formulating representations
corresponding to semantic structure of sentences or propositions. Like Tesniere (Tes-
niere 2015: 97) discussed in Section 5.1, Haegeman employs the metaphor of a theatre
play when discussing the argument structure of predicates. A play not only describes
the number of participants but also what corresponding roles they play. The spe-
cific semantic relations between the verb and its arguments is comparable with the
identification of characters in a play script (Haegeman 1991b: 49).

In logical notation such as in Example 53 a proposition is comprised of a predicate
(P) that takes a certain number of arguments (here a and b). By analogy to the logical
tradition, in GBT, the verb is said to be like the predicate while the Subject together
with complements are like the arguments that the predicate requires.

In Example 54 Maigret, taking Subject position, is the Agent in the process of
killing while Poirot in the complement position is the Patient that receives the effects
of the process of killing. The generic argument structure for the verb “to kill” can be
expressed as in Example 55. The first argument is of NP category and takes the role
of an Agent, while the second argument is also an NP but takes the Patient role. The
transitivity of a verb dictates how many arguments there should be.

(53) P(a, b)

(54) Maigret killed Poirot.

(55) V kill: 1 (NP:Agent), 2 (NP:Patient)

In the literature these relations between the verb and their arguments are called
thematic roles or theta-roles (θ-roles). It is said that the verb theta marks its arguments.
The component of the grammar that regulates the assignment of thematic roles is
called theta theory.

In GBT the theory of thematic roles is very sketchy and does not go beyond
the distinction of several thematic roles (Agent/Actor, Patient, Theme, Experiencer,
Beneficiary, Goal, Source, Location and the controversial Theme) (Haegeman 1991b:
50). Theta theory has a central criterion that is stipulated in Generalisation 6.1.2.

Generalisation 6.1.2 (The theta criterion). The theta criterion requires that:

• each argument is associated with one and only one theta role

• each theta role is assigned to one and only one argument (Haegeman 1991b: 54)
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In English, however, there is a special case, that of expletives, when the Subject
argument is filled by the pronoun it that receives no thematic role and acts rather as a
dummy slot filler without any semantic contribution to the meaning of the sentence
(Haegeman 1991b: 62). An example is shown in Example 56. Worth noticing is also
the fact that auxiliary verbs and copula verbs do not assign thematic roles (Pollock
1989).

(56) It surprised Jeeves that the pig had been stolen.

The verb that assigns a theta role does not need to specify which syntactic category
it should be realised by. In more technical terms, this means that the categorial selection
(c-selection) follows from the semantic relation (s-selection). When a theta role can
be assigned to an argument it is said that it is saturated. In order to identify the
assignment of respective roles arguments are identified by means of an index provided
as subscript in the sentence.

(57) Maigreti killed the burglarj .

(58) Maigreti said that hei was ill.

In Example 57 Maigret has the index i and the burglar may be j, meaning they are
distinct referents. Conversely, in Example 58, “he” receives the same index as Maigret
because they are interpreted as referring to the same entity. We say that the two are
coindexed.

6.1.3 Government and Binding

Using the terminology from traditional grammar it is said that a verb governs its object.
This is generalised in GBT as a rule that the head of a phrase, called governor, governs
its complement, called the governee. This relation is loosely defined in Definition 6.1.3
below and formally in Definition 6.1.5.

Definition 6.1.3 (government i). A governs B if

• A is a governor;

• A and B are sisters

Governors are heads (Haegeman 1991b: 86).

In Figure 6.1 the verb “abandon” is the head of the verb phrase (VP) and governs
the direct object - nominal phrase (NP) “the investigation”. V does not govern the
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subject NP “Poirot”. All the constituents governed by a node constitute the governing
domain of that node. In this case VP is the governing domain of V.

Before providing the next definition of government, I first introduce the notion of
C-command which provides a general pattern for how the agreeing elements relate
to each other in the parse tree. C-command is formally defined in Definition 6.1.4.
When considering the geometrical relation between the agreeing elements, one always is
higher in the tree than the other one in the manner depicted in Figure 6.3b. In Figure
6.3a the co-subscripted nodes indicate agreement. Here the [Spec, NP] c-commands all
the nodes dominated by the NP. These nodes constitute the c-command domain of the
Spec element (Haegeman 1991b: 134).

NP

N̄

PP

Chomskysur

Ni

livre

Speci

le

(a) Example of agreement in French (Haege-
man 1991b: 132)

X

. . .

. . .Bi

Ai

(b) Schematic representation of the
c-command (Haegeman 1991b: 133)

Fig. 6.3 Agreement example and schematic representation

Definition 6.1.4 (c-command). A node A c-commands a node B if and only if

• A does not dominate B;

• B does not dominate A;

• the first branching node dominating A also dominates B (Haegeman 1991b: 212).

Definition 6.1.5 (Government). X governs Y if and only if

• X is either of the category A, N, V, P, I;
or
X and Y are coindexed

• X c-commands Y;

• no barrier intervenes between X and Y;

• there is no Z such that Z satisfies the points above and X c-commands Z
(Haegeman 1991b: 557).
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In GBT three types of NP are distinguished: full noun phrases (e.g. Maigret, the
doctor, etc.), pronouns (e.g. he, me, us, etc.), and anaphors comprised of reflexives
(e.g. myself, herself, etc.) plus reciprocals (e.g. each other, one another). Pronouns
and anaphors (reflexives and referential) lack inherent reference. Anaphors need an
antecedent for their interpretations whereas pronouns do not. Pronouns indicate
some inherent features of the referent so that they can be identified from contextual
information. The full noun phrases called Referential expressions, or R-expression for
short, are inherently referential and do not need an antecedent. Moreover they do not
accept an antecedent (Haegeman 1991b: 226). The NP types can be defined in terms
of features Anaphor and Pronominal (systematised together with the empty categories
in Table 6.3 below). This way Pronouns have features [+Pronominal,-Anaphor],
Anaphors [+Pronominal,-Anaphor] and the R-expressions [-Pronominal,-Anaphor].
The last combination [+Pronominal,+Anaphor] corresponds to PRO empty category
which will be discussed in Section 6.2.1 below.

The module of the theory regulating interpretation of the noun phrase (NP) is
referred to, in GBT, as binding theory (BT). It is formally defined in terms of c-
command in Definition 6.1.6. And because BT is essentially concerned with the binding
of NPs in argument positions (A-position), it is rather A-binding (see Definition 6.1.7)
is of interest here. An A-position is a position in the tree to which a theta role can
(but not necessarily) be assigned (Haegeman 1991b: 115).

Definition 6.1.6 (Binding). A binds B if and only if

• A c-commands B;

• A and B are coindexed (Haegeman 1991b: 212).

Definition 6.1.7 (A-Binding). A A-binds B if and only if

• A is in A-position;

• A c-commands B;

• A and B are coindexed (Haegeman 1991b: 240).

Each of these NP types have an associated binding principle (ways in which to
interpret, if needed, the reference of the NP) provided in Generalisations 6.1.3, 6.1.4
and 6.1.5 below. These principles use the idea of governing category which for a node A
is the minimal domain containing it, its governor and an accessible subject. A subject
A is said to be accessible for B if the co-indexation of A and B does not violate any
grammatical principle (Haegeman 1991b: 241).
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Generalisation 6.1.3 (Principle A of binding theory). An anaphor (i.e. a NP with
the feature [+Anaphor] covering reflexives and reciprocals) must be bound in its
governing category (Haegeman 1991b: 224).

Generalisation 6.1.4 (Principle B of binding theory). The pronoun (i.e. a NP with
feature [+Pronominal]) must be free in its governing category (Haegeman 1991b: 225).

Generalisation 6.1.5 (Principle C of binding theory). An R-expression (i.e. a NP
with independent reference) must be free everywhere (Haegeman 1991b: 227).

6.2 On Null Elements
In certain schools of linguistics, in the study of syntax, an empty category is a nominal
element that does not have any phonological content and is therefore unpronounced.
Empty categories may also be referred to as covert nouns, in contrast to overt nouns,
which are pronounced (Chomsky 1993b). Some empty categories are governed by the
empty category principle (see Definition 6.2.1). When representing empty categories in
trees, linguists use a null symbol to depict the idea that there is a mental category at
the level being represented, even if the word(s) are left out of overt speech.

GBT recognises four main types of empty categories: NP-trace, WH-trace, PRO,
and pro. They are subject to Principles A, B and C of the binding theory provided
above and differentiated, like other NPs, by two binding features: the anaphoric feature
[a] and the pronominal feature [p]. The four possible combinations of plus (+) or minus
(-) values for these features yield four types of empty categories.

[a] [p] Symbol Name of the empty
category

Corresponding overt NP
type

- - t WH-trace R-expression
- + pro little Pro pronoun
+ - t NP-trace anaphor
+ + PRO big Pro none

Table 6.3 Four types of empty categories (adaptation from (Haegeman 1991b: 436))

In Table 6.3, [+a] refers to the anaphoric feature, meaning that the particular
element must be bound within its governing category whereas [+p] refers to the
pronominal feature which shows that the empty category is taking the place of an overt
pronoun.

Definition 6.2.1 (Empty Category Principle (ECP)).
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• Traces must be properly governed.

• A properly governs B if and only if A theta-governs B or A antecedent-governs B
(Chomsky 1986: 17).

• A theta-governs B if and only if A governs B and A theta-marks B.

• A antecedent-governs B if and only if A governs B and A is coindexed with B
(Haegeman 1991b: 442).

Next I describe in detail each empty category and the properties of corresponding
overt noun type.

6.2.1 PRO Subjects and control theory

PRO stands for the non-overt NP that is the subject in non-finite (complement, adjunct
or subject) clauses and is accounted for by control theory (CT).

Definition 6.2.2 (Control). Control is a term used to refer to a relation of referential
dependency between an unexpressed subject (the control element) and an expressed
or unexpressed constituent (controller). The referential properties of the controlled
element are determined by those of the controller (Bresnan 1982).

Control can be optional or obligatory. While obligatory control has a single in-
terpretation, that of PRO being bound to its controller, optional control allows for
two interpretations: bound or free. In Example 59 the PRO is controlled, thus bound,
by the subject “John” of the matrix clause (i.e. higher clause) whereas in 60 it is
an arbitrary interpretation where PRO refers to “oneself” or “himself”. In 61 and 62
PRO must be controlled by the subject of the higher clause and does not allow for the
arbitrary interpretation.

(59) John asked how [PRO to behave himself/oneself].

(60) John and Bill discussed [PRO behaving oneself/themselves in public].

(61) John tried [PRO to behave himself/*oneself].

(62) John told Mary [PRO to behave herself/*himself/*oneself].

Sometimes the controller is the subject (as in Examples 59, 60, 61) and sometimes
it is the object (Example 62) of the higher clause. Haegeman (1991b: 278) proposes
that there are two types of verbs, verbs of subject and of object control. The following
set of generalisations from Haegeman (1991b) are instrumental in identifying places
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where a PRO constituent can be said to occur and identifies its corresponding binding
element.

Generalisation 6.2.1. Each clause has a subject. If a clause doesn’t have an overt
subject then it is covertly (non-overtly) represented as PRO (Haegeman 1991b: 263).

Generalisation 6.2.2. A PRO subject can be bound, i.e. it takes a specific referent
or can be arbitrary (equivalent to pronoun “one”) (Haegeman 1991b: 263). In case of
obligatory control, a PRO subject is bound to a NP and must be c-commanded by its
controller (Haegeman 1991b: 278).

Generalisation 6.2.3. PRO must be in ungoverned position. This means that (a)
PRO does not occur in object position (b) PRO cannot be subject of a finite clause
(Haegeman 1991b: 279).

Generalisation 6.2.4. PRO does not occur in the non-finite clauses introduced by if
and for complementizers, but it can occur in those introduced by whether (Haegeman
1991b: 279).

Examples 63 and 64 illustrate Generalisation 6.2.4

(63) John doesn’t know [whether PRO to leave].

(64) * John doesn’t know [if PRO to leave].

Generalisation 6.2.5. PRO can be subject of complement, subject and adjunct
clauses (Haegeman 1991b: 278).

Generalisation 6.2.6. When PRO is the subject of a declarative complement clause
it must be controlled by an NP, i.e. arbitrary interpretation is excluded (Haegeman
1991b: 280).

Generalisation 6.2.7. The object of an active clause becomes subject when it is
passivized and also controls the PRO element in complement clause (Haegeman 1991b:
281).

Generalisation 6.2.8. PRO is obligatorily controlled in adjunct clauses that are
not introduced by a marker (Haegeman 1991b: 283).

Adjuncts (clauses or phrases) often are introduced via prepositions. Nonetheless
there are rare cases of adjunct clauses free of preposition. Examples 65 and 66 illustrate
such marker-free adjunct clauses.
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(65) John hired Mary [PRO to fire Bill].

(66) John abandoned the investigation [PRO to save money].

Generalisation 6.2.9. PRO in a subject clause is optionally controlled; thus by
default it takes arbitrary interpretation (Haegeman 1991b: 283).

(67) PROi smoking is bad for the healthj .

(68) PROi smoking is bad for youri healthj .

(69) PROi smoking is bad for youi.

(70) PROi lying to youri friends decreases youri trustworthinessj .

A default assumption is to assign arbitrary “one” interpretation to each PRO
subject in subject clauses. However, there are cases when it may be bound (resolved)
to a pronominal NP in the complement of the higher clause. The binding element can
be either the entire complement or a pronominal part of it like the qualifier or the
possessor. Example 67 illustrates that PRO has only arbitrary interpretation since
it cannot be bound to the complement “health”. Moreover PRO can also be bound
to (a) the possessive element of a higher clause - example 68, (b) the complement of
the higher clause - example 69 and (c) either the possessives in lower or higher clause,
Example 70.

6.2.2 NP-traces

In GBT, movement is a kind of transformation used to explain discontinuity or
displacement phenomena in language. It is based on the idea that some constituents
appear to have been displaced from the position where they receive important features
of interpretation.

GBT distinguishes three types of movement: (a) head-movement - the movement
of auxiliaries from I to C , Wh-movement - when the wh-constituent lands in Spec
position of a CP (i.e. [Spec, CP]) and (c) NP-movement when a NP is moved into an
empty subject position. NP-movement in GB theory is used to explain passivization,
subject movement (in interrogatives) and raising. The raising phenomenon (Definition
6.2.4) is the one that is of interest for us here as it is the one involving an empty
constituent.

Raising and control phenomena have been systematised by Teich (1991) in the
context of systemic grammar. This work however aims at resolving the empty con-
stituents within the syntactic structures (as GBT describes) rather than a paradigmatic
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integration of the phenomena into the Transitivity system network. Thus I resort to
translating the principles from GBT into the grammar of the current thesis.

When an NP moves it is said to leave traces (Definition 6.2.3). The moved
constituent is called the antecedent of a trace. Both the trace(s) and the antecedent
are coindexed and form what is called a chain (Haegeman 1991b: 309).

Definition 6.2.3 (Trace). A trace is an empty category which encodes the base
position of a moved constituent and is indicated as t (Haegeman 1991b: 309).

Consider Examples 71 to 74 where I use square brackets to indicate boundaries of an
embedded clause. There are two cases of expletives (71 and 73) and their non-expletive
counterparts (72 and 74), where the subject of the lower clause is moved to the subject
position of the matrix clause by replacing the expletive. The movement of NPs is
described in GB as leaving traces which here are marked as t. This phenomena is called
raising (Definition 6.2.4) or as Postal (1974) calls this case subject-to-subject raising.

Definition 6.2.4 (NP-raising). NP-raising is the NP-movement of a subject of a
lower clause into subject position of a higher clause (Haegeman 1991b: 306).

(71) It was believed [Poirot to have destroyed the evidence].

(72) Poiroti was believed [ti to have destroyed the evidence].

(73) It seems [that Poirot has destroyed the evidence].

(74) Poiroti seems [ti to have destroyed the evidence].

The subjects “It” and “Poirot” in none of the examples 71–74 receive a semantic
role from the main clause. “It” is an expletive and never receives a thematic role while
“Poirot” in 72 and 74 takes an Agent role from “destroy” and is the Experiencer neither
of “believe” nor of “seem”. So the verbs “believe” and “seem” do not theta mark their
subjects in these examples.

Raising is very similar to obligatory subject control with a difference in thematic
role distribution. In the case of subject control, both the PRO element and its binder
(the subject of the higher clause) receive thematic roles in both clauses. However in the
case of raising, the NP is moved and it leaves a trace which is theta marked but not to
the antecedent (Haegeman 1991b: 314). This is expressed in Generalisation 6.2.10.

Generalisation 6.2.10. The landing site for a moved NP is an empty A-position.
The chain formed by an NP-movement is assigned only one theta role and it is assigned
on the foot of the chain, i.e. the lowest trace (Haegeman 1991b: 314).
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So, in the case of raising, the landing sites for a moved NP are empty subject
positions or the ones for expletives. As a result of movement, these positions are filled
or expletives are replaced with the moved NP. The movement of NPs that have a
Wh-word is described in the next section.

6.2.3 WH-traces

Wh-movement is involved in the formation of Wh-interrogatives and in the formulation
of relative clauses. We are interested in both cases as both of them leave traces of
empty elements that are relevant for transitivity analysis.

(75) [What] will Poirot eat?

(76) [Which detective] will Lord Emsworth invite?

(77) [Whose pigs] must Wooster feed?

(78) [When] will the detective arrive at the castle?

(79) [In which folder] does Margaret keep the letter?

(80) [How] will Jeeves feed the pigs?

(81) [How big] will the reward be?

Haegeman (1991b: 375) offers Examples 75 – 81 as examples involving Wh-
constituents, which are any NPs or PPs that contain a Wh-word in their componence.
A Wh-word is any of the following words or their morphological derivations (by adding
suffixes -ever, -soever): who, whom, whose, what, which, why, where, when and how.
Thus the wh-constituent can be a single word or a Wh-phrase. The Wh-phrase, in GBT,
is then the NP or PP which is the maximal projection from a Wh-word. Haegeman
treats each Wh-word as the head of the Wh-phrase. This is not quite the case .
However, in Section 6.3.3, I , will provide a different definition of Wh-group such that
it is congruent with Systemic Functional Grammars.

In GBT case occupies an important place in the grammar. The rules governing
case are known as case theory. Verbs dictate the case of their arguments, a property
called case marking. Subjects are marked with Nominative case while Complements of
the verb are marked with Accusative case.

In English, however, the case system is very rudimentary as compared to many
other languages. Hence, who, whom and their derivatives whoever and whomever are
the only Wh-words with overt case differentiation. The other Wh-words what, when,
where and how do not change their form based on case.
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Example 82 shows that the Accusative (whom) is disallowed when its trace is in
Subject position since this requires Nominative (who). In example 83 the reverse
holds and the Nominative form is disallowed as the Wh-word moved from Complement
position requires Accusative case.

(82) Whoi/*Whomi do you think [ti will arrive first?]

(83) Whomi/*Whoi do you think [Lord Emsworth will invite ti?]

Another important distinction to be made among English Wh-words is theta-
marking, i.e. the argument and non-argument distinction. Some wh-constituents will
be in A-positions (i.e. functioning as subject or complement) such as in Example 75 –
77 or in non A-position (i.e. functioning as adjunct) such as in Examples 78 and 80.

When the Wh-constituent moves, there are two places where it can land: (a) either in
the subject position of the matrix clause changing its mood to interrogative (example 84)
or (b) subject position of the embedded clause creating embedded questions (example
85). However regardless of the landing site, the movement principle is subject to what
Haegeman describes as the that-trace filter expressed in Generalisation 6.2.11 and
the Subjacency condition (Generalisation 6.2.12). Note that the matrix or embedded
clauses correspond to the category of inflectional phrase (IP).

(84) Whomi do [you believe [that Lord Emsworth will invite ti]]?

(85) I wonder [whomi you believe [that Lord Emsworth will invite ti]].

Generalisation 6.2.11 (That-trace filter). The sequence of an overt complementizer
“that” followed by a trace is ungrammatical (Haegeman 1991b: 399).

The examples in 86 to 89 provided by Haegeman (1991b: 398) illustrate how the
above generalisation applies.

(86) * Whom do you think that Lord Emsworth will invite?

(87) Whom do you think Lord Emsworth will invite?

(88) * Who do you think that will arrive first?

(89) Who do you think will arrive first?

Generalisation 6.2.12 (Subjacency condition). Movement cannot cross more than
one bounding node, where bounding nodes are IP and NP (Haegeman 1991b: 402).

The Subjacency condition captures the grammatically of NP-movement and exposes
two properties of the movement, namely as being successive and cyclic. Consider the
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chain creation resulting from Wh-movement in Examples 90 – 92 provided by Haegeman
(1991b: 403–406). The Wh-movement leaves (intermediate) traces successively jumping
each bounding node.

(90) Whoi did [he see ti last week?]

(91) Whoi did [Poirot claim [ti that he saw ti last week?]]

(92) Whoi did [Poirot say [ti that he thinks [ti he saw ti last week?]]]

What Generalisation 6.2.12 states is that a Wh-constituent cannot move further
than subject position of the clause forming an interrogative form. Or also it can move
outside into the subject position of the clause higher above leaving a WH-trace as can
be seen in the Example 91 and 92.

Now that the kinds of null elements have been described laying out the main rules
governing their behaviour, I turn next to discuss how these elements can be identified
in terms of Dependency grammar.

6.3 Placing Null Elements into the Stanford depen-
dency grammar

This section provides a selective translation of principles, rules and generalisations
captured in GB theory into the context of dependency grammar. The selections mainly
address the identification of places where (and by which relations) the null elements
should be injected into dependency structure that will later help the semantic parsing
process described in Chapter 9.

In this section the grammatical accounts will often overlap. To make a clear
distinction I will mark the dependency grammar relations with lower case in italic. When
the syntactic functions are marked with a capital letter (e.g. Subject, Complement,
Deictic) then they mean SFG functions and, if they are in lower case (e.g. direct
and indirect object), then the GBT reading applies. When the (unit/word) classes
are mentioned using full word lower case (nominal group, clause, etc.), then the SFL
reading shall be applied and when they are all upper case acronyms (NN, PP, WH-trace,
etc.) the GBT reading applies to.

6.3.1 PRO subject

Coming back to the definition of the PRO element in Section 6.2.1, it is strictly
framed by the non-finite subordinate clauses. In dependency grammar the non-finite
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complement clauses are typically linked to their parent via the xcomp relation, which
is defined in Marneffe & Manning (2008a) as introducing an open clausal complement
of a VP or ADJP without its own subject. Such cases can then can be resolved by
introducing a PRO element as can be seen in Figure 6.4.

Johni decided PROi to behave.

root

nsubj

xcomp
nsubj

mark

(a)

Johni told Maryj PROj to behave herselfj .

root

nsubj

xcomp

dobj
nsubj

mark dobj

(b)

Fig. 6.4 Dependency structure with a PRO subject

These complements are always non-finite. Following the principles stated in Gener-
alisations 6.2.1 and 6.2.3, the non-finite complement clause introduced by the xcomp
relation would receive by default a PRO subject (controlled or arbitrary).

The markers (conjunctions, prepositions or Wh-words) at the beginning of the
embedded clause are no longer connected via xcomp relations but instead via either
prepc, rcmod, partmod and infmod together with a slight variation in clause features
and constituency. Those cases are no longer treated under the PRO null element
considerations and will be discussed later in this chapter since they correspond to other
types of empty elements. The only exception, however, is the prepc relation with the
preposition “whether” which also introduces a complement clause with PRO element.

I have explained earlier how to identify the place where a PRO element should be
created and formulated in Generalisation 6.3.1. Before creating it we need to find out
(1) whether PRO is arbitrary (equivalent to pronoun “one”) or is bound to another
constituent. And if it is bound then decide (2) whether it is bound to (and coindexed
with) subject or object (in which case we say that PRO is subject or object controlled)
as can be seen in Figure 6.4.

From the Generalisation 6.2.6 above we can derive a test checking whether the mood
fo the complement clause is interrogative or declarative. Many grammars, including
SFG, do not consider that the non-finite clauses can have interrogative/declarative
variation (called by Halliday & Matthiessen (2004: 107-167) mood feature). Nonetheless,
in GBT, even if a clause is non-finite such a distinction is useful. The complement
clauses can have structural variation resembling a declarative or interrogative mood for
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the reason that a complement clause can start with a Wh-constituent which turns it
into an interrogative one. Thus the test is whether there is a Wh-marker (who, whom,
why, when, how) or the preposition “whether”. The presence of any marker like in
example 93 at the beginning of the complement clause will change the dependency
relation from xcomp to another one and sometimes effect the structure of the dependent
clause as well. The only case when the complement clause remains subjectless and
non-finite is the case introduced via a prepc relation and the preposition “whether”.
However if any such marker is missing then the clause is declarative and thus it must be
controlled by a NP, so arbitrary PRO is excluded. The cases of Wh-marked non-finite
clauses will be treated in Section 6.3.3 about Wh-word movement.

(93) Albert asked [whether/how/when/ PRO to go].

Based on the above I propose Generalisation 6.3.1 enforcing obligatory control for
xcomp clauses.

Generalisation 6.3.1. If a clause is introduced by an xcomp relation then it must
have a PRO element which is bound to either subject or object of the parent clause.

(94) Alberti asked [PROi to go alone].

(95) Alberti was asked [PROi to go alone].

(96) Alberti asked Wendyj [PROj to go alone].

(97) Alberti was asked by Wendyj [PROi to go alone].

Generalisation 6.2.7 required a test for passivisation (also known in dependency
grammar and SFL as voice). Knowing the voice of the parent clause is necessary in
order to determine which NP is controlling the PRO element in the complement clause.
Consider Example 94 and its passive form 95. In both cases there is only one NP that
can command PRO and it is the subject of the parent clause “Albert”. So we can
generalise that the voice does not play any role in controller selection in one argument
clauses (i.e. clauses without a nominal complement). In Examples 96 and 97 the
parent clause takes two semantic arguments. The second part of principle 6.2.2 states
that in case of obligatory control PRO must be c-commanded by an NP. In 96 both
NPs(“Albert” and “Wendy”) c-command the PRO element, however according to the
Minimality Condition (Haegeman 1991b: 479), “Albert” is excluded as the commander
of PRO because there is a closer NP that c-commands PRO. In the case of 97 the
only NP that c-commands PRO is the subject “Albert” because “by Mary” is a PP
(prepositional phrase) and also only NPs can control a PRO as stated in principle
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6.2.6. In the process of passivisation the complement becomes subject and the subject
becomes a prepositional (PP-by) complement and so the later is automatically excluded
from control candidates, thus conforming to Generalisation 6.2.7 (Haegeman 1991b:
281).

The above can be synthesised into Generalisation 6.3.2 appealing to linear proximity
of the words. But the linear order dimension is beyond the borders of dependency
grammar in the sense that the word order is not being accounted for explicitly as a
relation. Rather, the solution is technical: each word receives an index for the position
it occupies within a sentence which suffices to implement Generalisation 6.3.2 applied
in Chapter 9.

Generalisation 6.3.2. The controller of PRO element in a lower clause is the closest
nominal constituent of the higher clause.

The adjunct non-finite clauses such as the ones in Example 65 (“John hired Mary
[PRO to fire Bill]”) and 66 (“John abandoned the investigation [PRO to save money]”)
shall be treated exactly as the non-finite complement clauses are. Generalisation
6.2.8 emphasises obligatory control for them. The only difference between the adjunct
and complement clauses is dictated by the verb of the higher clause and whether it
theta marks or not the lower clause. In dependency grammar the adjunct clauses are
also introduced via xcomp and prepc relations, so syntactically there is no distinction
between the two patterns.

The prepc relation in dependency grammar introduces a prepositional clausal
modifier for a verb (VN), noun (NN) or adjective (JJ). Adjective and noun modification
are cases of copulative clauses. Such configuration are not relevant to the context of
this work because, as we will see in Section 8.1, the dependency graphs are normalised.
This process involves, among others, transforming the copulas into verb-predicated
clauses instead of adjective or noun-predicated clauses.

The last subordinate type concerned with the PRO element is the subject clause
such as the one in Example 67 (“PROi smoking is bad for the healthj”). In dependency
structure, the subject non-finite clauses are introduced via csubj relation. They are quite
different from complement and adjunct clauses because, according to Generalisation
6.2.9, the PRO is optionally controlled. Since in this case it is not possible to bind
PRO solely on syntactic grounds, Generalisation 6.2.9 proposes arbitrary interpretation
discussed in Section 6.2.1. Next I turn to identifying the second type of null elements
(NP-traces) in the dependency structure of a sentence.
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6.3.2 NP-traces

Syntactically, NP raising can occur only when there is a complement clause by moving
the subject of a lower clause into a position of a higher clause. The subject of the
higher clause c-commands the subject of the lower clause. This is exactly the same
syntactic configuration as in the case of PRO subjects (explained in Section 6.2.1). In
dependency grammar the complement clause without its own subject is called an open
clausal complement and is introduced via the xcomp relation.

Poiroti was believed ti to have destroyed the evidence

root
nsubjpass

auxpass

nsubj
aux

aux

xcomp

det
dobj

Fig. 6.5 Dependency parse for Example 72

Poiroti seems ti to have destroyed the evidence

root

nsub

nsubj

aux aux

xcomp

det
dobj

Fig. 6.6 Dependency parse for Example 74

Figures 6.5 and 6.6 represent dependency parse for Examples 72 and 74. In these
examples the subject position of the embedded clause is a NP-trace that is coindexed
with the subject position in the clause immediately higher. That subject can be either
another NP-trace, in which case they form a chain, or an overt subject.

There are also few exceptions to the above. First, the xcomp complement clause,
of course, should not have a subject of its own. Second, it should not be introduced
with the conditional marker “if” or with preposition “for”. Third, the higher clause
must have no nominal complement between the subject and the embedded complement
clause.

Next, if the above conditions are satisfied and the embedded clause follows the
obligatory subject control pattern, then it is important to distinguish whether the
empty subject is a PRO or a NP-trace t. Deciding this is not possible using only
purely syntactic criteria. The distinction is dictated by the distribution of semantic
(participant) roles of each verb (sense), which I discuss next.

Table 6.4 represents the semantic role distribution for the verbs “believe”, “seem”
and “destroy” employed in the examples above. In the second column the configuration
type is provided and the last column indicates the distribution of semantic roles. The
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role order is normalised such that in a declarative active voice clause the first role is
given to the Subject, the second to the complement (direct object) and the last to the
next complement (indirect object). The symbol “V” is there to indicate the position of
the verb.

Verb Process type canonical distribution of semantic roles
Believe Cognition Cognizant + V + Phenomenon
Seem Cognition It + V + Cognizant + Phenomenon
Destroy Action Agent + V + Affected
Table 6.4 Semantic role distribution for verbs “believe” and “seem”

Figure 6.5 depicts the analysis of a passive clause with an embedded complement
clause. The subjects and complements switch places in passive clauses and so do the
semantic roles. In this example, the Cognizant role distributed by the verb believe
to Subject position goes to the embedded/complement clause position. However
Phenomenon is the only semantic role that can be filled by a clause, all other roles
take nominal, prepositional or adjectival groups. This leads us to the conclusion that
the passive subject Poirot does not receive the Cognizant role from the “believe” frame
and in fact, as we will see later, it may receive semantic role(s) from “somewhere” else.

In Figure 6.6 the verb “seem” assigns semantic roles, according to the description in
Table 6.4, only to first and second complements. The subject is left unassigned because
the semantic configuration for the verb “seem” provides an expletive “it” instead of a
role. The embedded clause, which is the only complement, can fill only the Phenomenon
role. This means that the Cognizant role, just like in the previous example, is left
unassigned and the Subject “Poirot” does not receive any semantic role from the verb
“seem”.

The embedded clause in both cases is governed by the verb “destroy”, which assigns
the Agent role to the Subject and Affected role to the complement. The Subject
however has moved from the embedded clause into the Subject position of the higher
clause leaving an NP-trace. The distributed semantic role moves upwards on the chain
as well such that the Subject in the higher clause (the antecedent) receives the Agent
role from the embedded clause.

Here the problem is to decide what type of relationship holds between the empty
constituent and its antecedent (subject in the matrix clause) to which it is bound.
In the case of PRO constituent, the thematic roles are assigned to both the empty
constituent and to its antecedent locally in the clause as where they are located. So
the PRO constituent receives a thematic label dictated by the verb of the embedded
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clause and the antecedent by the verb of the matrix clause. In the t-trace case, the
thematic role is assigned only to the empty constituent by the verb of the embedded
clause and this role is propagated to its antecedent.

But this distinction requires analysis of the role distribution of upper and lower
clause predicates and deciding the type of relationship between the empty category
and its antecedent. If a semantically informed decision should be made at this stage of
parsing or postponed to Transitivity analysis (i.e. semantic role labelling) is debatable
because each approach introduces different problems.

Generalisation 6.3.3 presents the conditions that need to be verified in order to
distinguish the t-trace from the PRO element. I employ here the traditional grammar
syntactic features and categories and semantic configurations together with participant
roles from the Cardiff grammar.

Generalisation 6.3.3. To identify the t-traces all the following conditions need
hold:

• the subject control pattern respects case agreement.

• the process type of the higher clause is two or three role cognition, perception or
emotion process (considering constraints on Cognizant and Phenomenon roles).

• among the configurations of higher clause there is one with:

– an expletive subject OR

– the Phenomenon role in subject position OR

– Cognizant in subject position AND the clause has passive voice or interrog-
ative mood (cases of movement).

6.3.3 Wh-traces

I now turn to how Wh-movement and relative clauses are represented and behave
in dependency grammar and SF grammars. Figures 6.7 and 6.8 present dependency
parses for Wh-movement from Subject and Complement positions of lower clause while
6.9 shows movement from adjunct position.

Haegeman (1991b: 374) defines phrases that contain a Wh-word as Wh-phrases.
This being independent of whether the wh-word in is the head or determiner position
in the phrase, as, according to Haegeman, the properties of that wh-word are projected
to the level of the entire phrase. In SFG, the Wh-words function as heads but there are
other cases when they act as determiners, possessors or adjectival modifiers, defined



140 Government and Binding Theory (GBT)

Whom do you believe that Lord Emsworth will invite first ?

rootdobj
aux

nsubj

mark

nn aux
nsubj

ccomp

advmod

Fig. 6.7 Dependency parse for Example 83

Who do you think will arrive first ?

rootdobj
aux

nsubj aux
ccomp

advmod

Fig. 6.8 Dependency parse for Example 82

for the purposes of this thesis in Definition 6.3.1. This issue is extensively discussed
by Abney (1987), Quirk et al. (1985) and Halliday & Matthiessen (2013b). From
these discussions, I have systematised the functional distribution for Wh-words and
Wh-groups in Table 6.5. This systematisation follows a systemic functional approach
as it is more appropriate in discussions about groups, constituents, their features and
functions. Note that Wh-group is not a new unit class in the grammar but a constituent
feature possibly assigned to any of the three unit classes. This systematisation is useful
for scoping the Wh-movement phenomena in SFL terms and will be used below.

Definition 6.3.1 (Wh-group). Wh-group is a nominal, prepositional or adverbial
group that contains s Wh-word either as head or as modifier.

Features Clause functions of the Wh-group Group functions of
Wh-word

Subject Complement
person who,

whoever
whom, whomever,

whomsoever
head/thing

person, possessive whose possessor
person/non-

person
which determiner

non-person what, whatever head/thing
Adjunct

various when, where, why, how head/modifier
circumstantial (whether, whence, whereby, wherein)

features (and their -ever derivations)
Table 6.5 Functions and features of Wh-words and groups

Just like in cases of NP-movement, the Wh-groups move only into two and three
role cognition, perception and emotion semantic configurations. As mentioned above,
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the NP-antecedents land in expletive or passive subject position, the Wh-antecedents,
by contrast, land in subject or subject preceding position functioning as subject,
complement or adjunct depending on the Wh-word (or Wh-group).

The essential features for capturing Wh-movement in dependency graphs are (a)
the finite complement clause is identified by a ccomp relation between the matrix and
embedded clause (b) the Wh-word/group plays a complement function in the higher
clause which is identifiable by dobj, prep or advmod relations to the main verb (c)
the function of the WH-trace in the lower clause is either Subject (e.g. Example 83),
Complement (e.g. Example 82) or Adjunct. The ccomp relation is defined in Marneffe
& Manning (2008a) to introduce complement clauses with an internal subject which
are usually finite.

Regardless whether the syntactic function of the traces in the lower clause is Subject
or Complement, in the higher clause the Wh-group takes the Complement function and
is bound to the Main Verb via the dobj relation but is positioned before the main verb
and the Subject (a structure corresponding to Wh-interrogatives). A wh-group can take
also Subject function in the higher clause, but then it is not a case of Wh-movement
and is irrelevant for us at this point because there is no empty element involved.
The attribution of clause function to the WH-trace is based on either the case of the
Wh-group or the missing functional constituent in the lower clause.

When do you think Lord Emsworth will invite the detective ?

rootadvmod
aux

nsubj
ccomp

nn
nsubj

aux

ccomp

det
dobj

Fig. 6.9 Example dependency parse with Adjunct Wh-word

In case of WH-traces with Adjunct function in the lower clause, as shown in Figure
6.9, their antecedents also receive Adjunct functions in the higher clause. One peculiar
finding about Adjunct Wh-trace is that it cannot bind, at least in English, to the
clause with a (generic) simple present tense. The clause must be bound in some other
tense or modality than present simple. The reader can experiment with changing tense
in the above example to test this.

(98) Whoi believes that Lord Emsworth will invite a detective?

(99) To whomi did Poirot say ti that Lord Emsworth will invite a detective?

Not always are the Wh-groups movements from a lower clause. It is possible that
the trace of the moved element resides in the higher clause (complement) or even to
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have a case of no movement when a Wh-word takes the Subject function in the higher
clause. Examples 98 and 99 are good examples of a short (in clause) movement of
this kind. These cases of Wh-movement share similarities to relative clause Wh-traces
that will be described in Section 6.3.4 below. However the short movement cannot
be grasped in terms of dependency grammar because order is the only factor that
counts and dependency grammar is order free and does not (explicitly) account for it.
The functions are already assigned accordingly so short movement is not a subject of
interest for the current section.

Who did Poirot say that he saw last week ?

rootdobj
aux

nsubj

mark

nsubj
ccomp

nsubj
ccomp

amod
tmod

Fig. 6.10 Dependency parse for Example 92

Recall the cyclic and successive properties of Wh-movement from the previous sec-
tion underlined by Example 92 and its dependency parse in Figure 6.10. GBT suggests
that the Wh-movement leaves traces in all the intermediary clauses. In dependency
grammar these properties are treated instrumentally for determining intermediary
wh-traces in the search for the foot of the chain and none of the intermediary traces are
created as null elements. There is no further purpose for them as they do not receive a
thematic role in the intermediary clauses.

6.3.4 Wh-traces in relative clauses

In GB theory the Wh-words that form relative clauses (who, whom, which, whose)
are considered moved. In dependency grammar such movement is redundant since
the Wh-word and its trace are collapsed and take the same place and function. The
Wh-words function either as Subject or Complement. When the relative clause is
introduced by a Wh-group there is no empty element to be detected, rather there is an
anaphoric indexing relation to a noun it refers to.

Focusing now on the relative clauses, there are three more possible constructions
that introduce them: (a) a prepositional group that contains a Wh-word, (b) a “that”
complementizer which behaves like a relative pronoun and (c) the Zero Wh-word which
is a Wh-trace empty element which functions the same way as an overt Wh-word.
Table 6.6 lists possible elements that introduce a relative clause, their features and the
functions they can take. The traces of Wh-words to their antecedents are identified as
follows.
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Relativizing
element

Feature (Clause)
Function

Examples

who person Subject ... the woman who lives next door.
whom person complement (non

defining clause)
... the doctor whom I have seen today.

which non-
person

Subject/
complement

... the apple which is lying on the table.

... the apple which George put on the table.
whose posses-

sive,
person

possessor in
Subject

... the boy whose mother is a nurse.

(any of the above in
prepositional group)

person/
non-
person

thing/possessor
in Subject

... the boy to whom I gave advice.

... the cause for which we fight.

that person/
non-
person

Subject ... the apple that lies on the table.

Zero Wh-word person/
non-
person

Subject ... the sword sent by the gods.

Table 6.6 The Wh-words introducing a relative clause.

Arthur took the sword which was sent to him by gods .

root

nsubj det
dobj nsubjpass

auxpass

rcmod
prep_to

agent

Fig. 6.11 Dependency parse for “Arthur took the sword which was sent to him by gods.”

Arthur took the sword sent to him by gods .

root

nsubj det
dobj

vmod
prep_to

agent

Fig. 6.12 Dependency parse for “Arthur took the sword sent to him by gods.”

Relative clauses in dependency graphs are introduced by rcmod and vmod relations.
The rcmod introduces relative clauses containing a Wh-group while the vmod introduce
finite and non-finite relative clauses with a Zero Wh-word. So the vmod dependency
relation suffices to signal the empty element. These two ceases are exemplified in the
Figures 6.11 and 6.12.

The Zero Wh-word behaves exactly like the PRO element in the case of non-finite
complement clauses discussed in Section 6.2.1. It receives thematic roles in both the
higher clause and in the lower clause and is not a part of a chain like the cases of
NP/Wh-movement.
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6.4 Discussion
This chapter has treated the identification of the null elements in syntactic structures
as this was identified as one of the major places where a mismatch between SFG and
the structural requirements for Transitivity analysis obtains. Section 6.2 presented
how GBT theory handles null elements and then Section 6.3 showed how the same
principles translate into Stanford dependency graphs involving also, for guidance, a
few references to SFL constituency structure.

This chapter also contributes to establishing cross-theoretical connections that are
among the primary objectives of the current thesis. Specifically it provides transla-
tions of necessary principles and generalisations from GB theory into the context of
dependency grammar. These results will be used directly in the parser implementation
described in Section 9.3.

Identification of null elements will be important below for the semantic role labelling
process described in Chapter 9 because, usually, the missing elements are participant
roles (theta roles) shaping the semantic configuration. Therefore to increase the accuracy
of semantic parsing, spotting null elements is a prerequisite. In the previous three
chapters three grammatical traditions have been presented falling into the linguistics
domain. Next follow three chapters explaining aspects of the Parsimonious Vole parser
implementation employing a computer scientific perspective.



Chapter 7

Graphs, Feature Structures and
Systemic Networks

The parsing algorithm, whose pipeline architecture we have seen in Section 1.7.4,
operates mainly with operations on graphs, attribute-value matrices and ordered lists
with logical operators. This chapter defines the main types of graphs, their structure
and how they are used in the following chapters which detail the parsing process.
This chapter also covers the operations relevant to the parsing algorithm: conditional
traversal and querying of nodes and edges, graph matching, pattern-graph matching
and pattern-based node selection, insertion and update.

While developing the Parsimonious Vole parser a set of representational requirements
arose that can be summarised as follows:

• graph representation

• arbitrary relations (i.e. typed and untyped edges)

• description rich (i.e. features of nodes and edges)

• linear ordering and configurations (i.e. syntagmatic and compositional)

• hierarchical tree-like structure (with a root node) but also orthogonal relations
among siblings and non-siblings

• statements of absence of a node or edge (i.e. negative statements in pattern
graphs)

• disjunctive descriptions (handling uncertainty)
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• conjunctive descriptions (handling multiple feature selections)

• (conditional) pattern specifications (i.e. define patterns of graphs)

• operational pattern specifications (i.e. a functional description to be executed in
pattern graphs)

The general approach to construct an SFG parse structure revolves around the
graph pattern matching and graph traversal. In the following sections I present the
instruments used for building such structures, starting from a generic computer science
definition of graphs and moving towards specific graph types covering also the feature
structures and conditional sets.

7.1 General definitions
In the field of computational linguistics trees have been taken as the de facto standard
data representation. In Section 1.7.3, I have mentioned already that I employ graph
and not tree structures.

Firstly, trees are a special kind of graph. Anything expressed as a tree is as well
a tree. Secondly, we gain a higher degree of expressiveness even if at the expense of
computational complexity, a point to which we will come back later in Section 7.4.
This expressiveness is needed when dealing with interconnection of various linguistic
theories which in practice is done by mapping the nodes of one tree structure onto
the nodes of another one. In addition, the structures are not always trees. There are
situations when a node has more than one parent or when a node is connected to its
siblings, which breaks the tree structure.

Definition 7.1.1 (Graph). A graph G = (V,E) is a data structure consisting of a
non-empty set V of nodes and a set E ⊆ V ×V of edges connecting nodes.

Definition 7.1.2 (Digraph). A digraph is a graph with directed edges. A directed
edge (u,v) ∈ E is an ordered pair that has a start node u and an end node v (with
u,v ∈ V )

In this thesis the graph nodes are considered to be feature structures forming Feature
Rich Graphs (see Definition 7.1.10). Before formally defining these graphs, I need to
address first the notion of feature structures and a few kinds of sets.
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In SFL the concept of feature takes up an important role. Also features are said to
form systems of choices that are structured in relation to one another and are suitable
for describing linguistic objects and phenomena.

Pollard & Sag (1987) have formally described useful concepts for grammatical
representations in the context of Head-Driven Phrase Structure Grammar (HPSG).
They adopt the typed feature structure theory and extend it in innovative ways applicable
in computational linguistics. Among others, they provide formal definitions for the
concepts of feature structure, hierarchy, logical evaluation, composition and unification,
the latter, key operations in parsing using feature structured grammars.

In this thesis, feature structures are important but only in a simplified version
serving as graph node descriptions. The main reason is the difference in approach as
the main parsing operations, here, are based on graph pattern matching (introduced in
the sections below).

In a broad computer science sense, including Pollard and Sag definition, feature
structures are equivalent to graph structures. So any feature structure can be expressed
as a graph and any graph can be expressed as a feature structure. But in a narrow
sense, as adopted in this thesis, it is useful to employ both concepts but each for a given
purpose. The feature structure is reduced to an attribute-value matrix (see Definition
7.1.3) and the graphs to a network of feature structure nodes (see Definition 7.1.10)
as depicted in Figure 7.1a, i.e. there are no nodes that carry atomic values such as
strings, numbers and there are no nodes carrying an id only and no content (called
here referential) as depicted in Figure 7.1b.

For example lets imagine a constituency graph fragment of two nodes Node 1 and
Node 2 where each has three associated features as can be seen in Figure 7.1a. If we
would insist to dispose of the feature structure within the node and express the features
as atomic graph nodes then the result would be a graph structure such as the one in
Figure 7.1b.

The main reasons in this separation are efficiency and practicality. First, it scopes
the operations on atomic values as belonging to feature structures and not as graph
nodes. Second, the graphs remain limited in size, close to the conceptualised linguistic
structures, i.e. dependency or constituency. Otherwise, the graphs and the manner
in which they are processed would rise in complexity. Firstly, the complexity would
manifest through at least one more round of nodes for each dependency or constituency
node (e.g. the nodes v1− v6 in Figure 7.1b) and, secondly, through the need of
distinguishing the referential (e.g. Node 1 and Node 2 in Figure 7.1b) and atomic
nodes (the nodes v1−v6).
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Node 1
f1 : v1
f2 : v2
f3 : v3



Node 2
f5 : v5
f6 : v6
f7 : v7


(a) The graph with feature structure nodes

Node 1

Node 2

v1 v2 v3

v4 v5 v6

f1 f2 f3

f4 f5 f6

(b) The graph with atomic and referential
nodes

Fig. 7.1 Graphs with feature structure nodes (adopted in this thesis) compared to graphs
with atomic and referential nodes

Definition 7.1.3 (Feature Structure (FS)). A feature structure F is a finite set of
attribute-value tuples fi ∈ F . A feature f = (a,v) is an association between an identifier
a (a symbol) and a value v which is either an atomic value (symbol, number, string), a
set or another feature structure.

The values of feature structures may be other feature structures allowing, if needed,
hierarchical descriptions. In the current implementation, however, the values of the
feature structure are restricted to atomic values or sets of values. The reason for this
restriction is that the feature structures simply provide descriptions of a graph node in
terms of multiple atomic values organised by the FS keys.

For convenience I define two functions to access the identifier and value in a feature
structure. The function name : F → symbol returns the feature symbol (identifier)
name(f) = a and the function val : F →{atomic,Set,FS} is a function returning the
ascribed value of a feature val(f) = v.

Definition 7.1.3 stipulates that the value of a feature may be also a set (besides an
atomic value). The sets used in this thesis need to carry additional properties required
for their interpretation. Specifically, the order needs to be addressed here and the
capacity to specify that set elements stand in a certain logical relation to one another
(e.g. conjunction, disjunction, negation, etc.). These two properties are covered in
Definition 7.1.4 and 7.1.5. For convenience I will assume from now on that sets (see
Definition 7.1.4) preserve order even when it is not really required.
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Definition 7.1.4 (Set). An (ordered) set S = {o0,o1,o2, ...,on} is a finite well defined
collection of distinct objects oi. A set is said to be ordered if the objects are arranged
in a sequence such that ∀i ∈ [1,n] : oi−1 < oi

Definition 7.1.5 (Conjunction Set). A conjunction set Sconj = (S,conj) is a set S

whose interpretation is given by the logical operand conj (also denoting the type of
the set) such that ∀oi,oj ∈ S : conj(oi,oj) holds.

The conjunction sets used in the current work are AND-set (SAND), OR-set (SOR),
XOR-set (SXOR) and NAND-set (SNAND). The assigned logical operands play a role
in the functional interpretation of conjunction sets. Formally these sets are defined as
follows.

Definition 7.1.6 (Conjunctive set). Conjunctive set (also called AND-set) is a
conjunction set SAND = {a,b,c...} that is interpreted as a logical conjunction of its
elements a∧ b∧ c∧ ...

Definition 7.1.7 (Negative conjunctive set). Negative conjunctive set (also called
NAND-set) is a conjunction set SNAND = {a,b,c...} that is interpreted as a negation
of the logical conjunction of its elements a ↑ b ↑ c ↑ ... equivalent to ¬(a∧ b∧ c∧ ...)

Definition 7.1.8 (Disjunctive set). Disjunctive set (also called OR-set) is a conjunc-
tion set SOR = {a,b,c...} that is interpreted as a logical disjunction of its elements
a∨ b∨ c∨ ...

Definition 7.1.9 (Exclusive disjunctive set). Exclusive disjunctive set (also called
XOR-set) is a conjunction set SXOR = {a,b,c...} that is interpreted as a logical exclusive
disjunction of its elements a

⊕
b

⊕
c

⊕
... equivalent to (a∧¬(b∧ c∧ ...))∨ (b∧¬(a∧ c∧

...))∨ (c∧¬(a∧ b∧ ...))

When conjunction sets are used as values in FSs then the logical operand dictates
the interpretation of the FS. When the set type is SAND then all the set elements hold
simultaneously as feature values. If it is a SOR then one or more of the set elements
hold as values. If it is SXOR then one and only one of set elements holds and finally if
it is a SNAND set then none of the elements hold as feature values.

The function τ(S), defined τ : S→{SAND,SOR,SXOR,SNAND}, returns the type
of the conjunction set and the function size(S), defined size : S → N, returns the
number of elements in the set. The size function is also denoted as |S|.

Now that all the necessary basic notions nave been formally defined I define the
feature rich graph and provide a couple of examples afterwards.
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Definition 7.1.10 (Feature Rich Graph (FRG)). A feature rich graph is a digraph
whose nodes V are feature structures and whose edges (u,v,f) ∈ E are three valued
tuples with u,v ∈ V and f ∈ F an arbitrary feature structure.

Further on, for convenience, when I refer to a graph I will refer to a feature rich
digraph unless otherwise stated. The parsing algorithm operates with such graph
and they are further distinguished, based on purpose as: Dependency Graphs (DG)
(example figure 7.2), Constituency Graphs (CG) (Figure 7.3) and Pattern Graphs (PG)
also referred to as Query Graphs (QG).

Edges are in general defined to carry feature structures but this capacity is not
employed, for example, in the case of constituency graphs; only minimally employed in
the case of dependency graphs, where the dependency relation is specified; and fully
employed in pattern graphs. Nonetheless, treating all of them as feature rich graphs
simplifies the implementation.

Definition 7.1.11 (Dependency Graph). A dependency graph is a feature rich digraph
whose nodes V correspond to words, morphemes or punctuation marks in the text
and carry at least the following features: word, lemma, part of speech (pos) and,
when appropriate, the named entity type (net); the edges E describe the dependency
relations (rel).

word:gave,
lemma:give,

pos:VBD

word:He,
lemma:he,
pos:PRP

nsubj

word:cakes,
lemma:cake

pos:NN

word:the,
lemma:the,

pos:DT

det

dobj

word:away,
lemma:away,

pos:RB

advmod

Fig. 7.2 Dependency graph example with FS nodes and edges for sentence “He gave the cake
away”
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Definition 7.1.12 (Constituency Graph). A constituency graph is a feature rich
digraph whose nodes V correspond to SFL units and carry the unit class and the
element function within the parent unit (except for the root node); while the edges E

represent constituency relations between constituents.

The basic features of a constituent node are the unit class and the function(s) it
takes, which is to say the element(s) it fills in the parent unit (as described in the
discussion of theoretical aspects of SFL in Chapter 3). The root node (usually a clause)
is an exception and it does not act as a functional element because it does not have a
parent unit. The leaf nodes carry the same features as the DG nodes plus the word
class feature, which corresponds to the traditional part of speech tags.

class:clause, tense:past simple, voice:active, polarity:positive

element:subject,
class:pronoun,

pos:PRP, word:He,
lemma:he

element:main verb,
class:verb,

pos:VBD, word:gave,
lemma:give

element:complement,
class:nominal group

element:deictic,
class:determiner,

pos:DT, word:the,
lemma:the

element:thing,
class:noun,

pos:NN, word:cake,
lemma:cake

element:adjunct,
class:adverb,
word:away,

lemma:away,
pos:RB

Fig. 7.3 Constituency graph example

Apart from the essential features of class and function, the CG nodes carry additional
class specific features selected from the relevant system network. The features considered
in this thesis were described in Chapter 4. In addition, the leaf CG nodes contain the
features of dependency graph nodes enumerated in Definition 7.1.11. The way CG
is enriched with features is described in the next chapter. In Figure 7.3, an example
CG is shown that carries tense, modality and polarity features on the clause node in
addition to class and element functions. The next section describes the graph traversal
in general and two special variants needed later in the chapter.
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7.2 Graph traversal
From the general set of operations on graphs defined in graph theory (Bondy et al.
1976; West et al. 2001) graph traversal in particular is of importance for the current
work. It is used for the constituency graph creation step presented in the parsing
pipeline from Figure 1.8 (in Section 1.7.4). The constituency graph is created by the
traversal of a dependency graph. Traversal is used in this thesis for dependency graphs
only. Next I address these operations in detail.

The graph traversal defined in Definition 7.2.1 and especially its conditional and
generative extensions defined in Definition 7.2.2 and 7.2.3 are important operations
in this work. They are employed in the first phase of the algorithm, for copying the
dependency graph as a constituency graph as will be described in Chapter 8.

Definition 7.2.1 (Traversal). Traversal t(VS ,G) of a graph G starting from node VS

is a recursive operation that returns a set of sequentially visited nodes neighbouring
each other in either breadth first (tBF ) or depth first (tDF ) orders.

The graph traversal is employed either for searching for a node or an edge or finding
a sub-graph that fulfils certain conditions on its nodes and edges if it is a conditional
traversal. For example in the semantic enrichment phase (that will be described in
Section 9.2), to ensure that the semantic patterns are applied iteratively to each clause,
all clause sub-graphs without including the embedded (dependent) clauses are selected
from multi-clause CG graphs.

Definition 7.2.2 (Conditional Traversal). Conditional traversal t(FV ,FE ,VS ,G) of
the graph G starting from node VS under node conditions FV and edge conditions
FE is a traversal operation where a node is visited if and only if its feature structure
conditionally fulfils the FV and the edge that leads to this node conditionally fulfils
the FE .

One of the potential complete traversals for the graph from Figure 7.4 starting
from node 1 is {1, 2, 3, 4, 5, 6, 7, 8} using breadth first strategy or {1, 2, 5, 6, 3, 4, 7,
8} for depth first strategy. On the other hand, a conditional traversal of non-dashed
nodes staring from the node 1 results in {1, 2, 4, 6}, {1, 4, 2, 6} or {1, 2, 6, 4}. The
first two traversals corresponding to the breadth first strategy and the third one to the
depth first strategy.

I also use the graph traversal to execute generative operations on a parallel graph,
which is a special case of graph rewriting. For example DG traversal is employed for
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1

2

5 6

3 4

7 8

Fig. 7.4 Sample graph with numbered node of two types

bootstrapping (i.e. creating in parallel) the CG as was previously motivated in Section
1.7.4.

Definition 7.2.3 (Generative Traversal). Generative traversal g(M,G) : H of a source
graph G via an operation matrix M is an operation resulting in the creation of the
target graph H by contextually applying generative operations to bring the latter into
existence. The operation matrix M is a set of tuples (ctx,o,p) that link the visited
source node context ctx (as features of the node, the edge and previously visited
neighbour) to a certain operation o that is executed on the target graph H with
parameters p.

= create

= extend

(a) The rule set

a

b

d

c

(b) The target

a: {1, 3}

b: {2, 5}

d: {6}

c: {4, 7, 8}

(c) The explained target

Fig. 7.5 The generative traversal result for Figure 7.4 using create and extend operations

Next I provide a rough description of what happens when a generative traversal is
executed; the exact algorithm will be described in detail in Section 8.3. For example
lets assume that only two types of operation are needed for our task at hand. The
first is to create a new node on the target graph once a non-dashed node is visited on
the source graph. And, second, is to pass the dashed nodes without doing anything.
This is schematically represented in Figure 7.5a. Lets now apply these operations
on traversing the example graph using the breadth first strategy following the order
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provided above: 1, 2, 3, 4, 5, 6, 7, 8. The traversal graph is considered source graph
and the target graph is empty at the beginning of the process. Upon visiting node 1 a
first node is created on the target graph which is labelled a. When traversing nodes 2
and 4 then each of them signal creation of the nodes b and c as children of a in the
target graph and correspondingly node 6 signals creation of node d. The final target
graph is depicted in Figure 7.5b and in Figure 7.5c the source nodes are embedded
into the target node to make explicit that the non-dashed nodes (i.e. 3, 5, 7, 8) are
simply passed over without any generative operation.

Note that, in the future work, other operations can be explored if needed. Now
that generative traversal is defined, by analogy, update, insert and delete traversals can
be defined on the source or target graph by using the same mechanism of operation
matrices mapping contexts of visited nodes and edges to update, insert and delete
operations. In this work, however, these operations are not used.

In Section 7.1 the last two definitions were for the constituency and dependency
graphs. They are used in this thesis to represent grammatical analysis of a sentence.
Next we will look at a special type of graph which represents fragments of structure
repeatable across multiple analyses. They represent generalisations or patterns that
usually are associated with grammatical features or a set of features which I explain in
Chapter 8. These graphs are called pattern graphs and the next section is dedicated to
them.

7.3 Pattern graphs
Regardless of the type, constituency or dependency, the parsing process (which will
be described in Chapter 8) relies on identifying patterns in graphs. The patterning
is described as both graph structure and feature presence (or absence) in the nodes
or edges. The pattern graphs (defined in 7.3.1) are special kinds of graphs meant to
represent small (repeatable) parts of parse graphs that, in the context of the current
work, are used to identify grammatical features.

The pattern graphs contrast with the parse (or instance) graphs which are either
constituency or dependency graphs. The parse graphs express what is an actual analysis
of a text, i.e. representing what is the case, whereas the pattern graph expresses a
potential that could be the case in the instance graph. This way the pattern graphs have
a prescriptive interpretation whereas the instance ones take a factual interpretation.

Definition 7.3.1 (Pattern Graph). A pattern graph (PG) is a feature rich graph for
expressing regularities in the node and edge structure.



7.3 Pattern graphs 155

I discuss two example of pattern graphs. One example shows a pattern graph
encoding the present perfect continuous tense, which traditional grammar defines as in
Table 7.1. Afterwards, the second example will show how the notion of linear succession
among nodes is accounted for in the pattern graphs for declarative and interrogative
mood.

has/have + been + Vb-ing
to have, present simple to be, past participle verb, present participle

Table 7.1 Present perfect continuous tense

Examples 100–102 show variations of present perfect continuous tense in a simple
clause according to declarative and interrogative mood and “has” contraction. Of
course there are more variations possible, for example, according to voice (active and
passive), but they are omitted here because they add combinatorially to the number
of examples and the ones provided already serve their purpose here. Figures 7.6-7.8
represent corresponding dependency parses for these examples (generated with the
Stanford dependency parser).

(100) He has been reading a text.

(101) He’s been reading a text.

(102) Has he been reading a text?

PRP VBZ VBN VBG DT NN
He has been reading a text

root
nsubj

aux

aux

dobj

det

Fig. 7.6 Present perfect continuous: indicative mood, un-contracted “has”

The present perfect continuous tense can be formulated as a pattern graph (including
voice) over the dependency structure as illustrated in Figure 7.9. In this pattern the
main lexical verb is present participle indicated via the VBG part of speech. It is
accompanied by two auxiliary verbs: to be in past participle (VBN ) form and to have
in present simple form specified by either VBZ for 3rd person or VBP for non-3rd
person. Also the to be can be either connected by the aux relation or in case of passive
form by the auxpass relation. Note that the pattern in Figure 7.9 constrains the edge
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PRP VBZ VBN VBG DT NN
He ’s been reading a text

root
nsubj

aux

aux

dobj

det

Fig. 7.7 Present perfect continuous: indicative mood, contracted “has”

VBZ PRP VBN VBG DT NN
Has he been reading a text

root
nsubj

aux

aux
dobj

det

Fig. 7.8 Present perfect continuous: interrogative mood, un-contracted “has”

type (using an OR-set) to the verb to be which can be either aux or auxpass and the
part of speech of the verb to have which can be VBZ or VBP.

pos:VBG

lemma:be
pos:VBN

OR[aux,auxpass]

lemma:have
pos:OR[VBZ,VBP]

aux

Fig. 7.9 The graph pattern capturing features of the present perfect continuous tense

One of the fundamental features of language is its sequentiality and directionality.
This aspect is not inherent in graphs. In the simplest form, they just describe
connections between nodes and are agnostic to any meaning or interpretation. Next, I
introduce the way I deal with linear order in the pattern graphs.

Lets consider the clause mood and encode the distinction between declarative and
Yes/No interrogative moods. In SFG these features are described in terms of the
relative order of clause elements. If the finite is before the subject then the mood
is Yes/No-interrogative, whereas when the finite succeeds subject then the mood is
declarative. Example 102 contrasts in mood with Examples 100 and 101.

Order can be specified in absolute or relative terms and partially or exhaustively.
In order to cover these three kinds of constraints, I introduce three special features:
the node id, precede and position. Node id takes a token to uniquely identify a node
in the graph, the precede feature takes an ordered set to indicate the (partial) linear
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precedence to other node ids, and the position feature indicates the absolute position
of a node.

One way to introduce order among nodes is then by marking them with an absolute
position. This is a good method applicable to parse graphs. The DGs and CGs, are
automatically assigned at creation time with the absolute position of the node in the
sentence text via the feature position. This feature is present in the leaf nodes only
and corresponds to the order number in which they occur in the sentence text while
the non-leaf node’s position is considered to be the lowest position of its constituent
nodes. The absolute position description is rarely used in the PGs. The only cases are
to state that the constituent is in first or last position in a sentence.

Another way to specify node order is through relative precedence, for which the
node id and the precedence features are introduced above. This is the preferred method
to provide the linear precedence dimension in pattern graphs. It is also relative so the
specification can be partial. With this method a node specifies that it precedes a set
of other nodes.

class:clause

element:subject,
position:1

element:finite,
position:2

Fig. 7.10 Declarative mood pattern graph with absolute element order

class:clause

element:subject,
id:s1, precede:f1

element:finite,
id:f1

Fig. 7.11 Declarative mood pattern graph with relative element order

To continue the example of mood features, I illustrate in Figures 7.10 and 7.11 the
use of relative and absolute node ordering constraints for declarative mood; and in
Figure 7.12, I depict the PG for the Yes/No interrogative mood. In both the latter
cases I use relative node ordering.

Patterns like the ones explained above can be created for a wide range of grammatical
features. Once the grammatical feature is encoded as a pattern graph it can be identified
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class:clause

element:finite,
id:f1, precede:s1

element:subject,
id:s1

Fig. 7.12 Pattern graph for Yes/No interrogative mood

in parse graphs (DG or CG) via the graph pattern matching operation described in
Section 7.4. Moreover, once the pattern is identified it can act as a triggering condition
for the node update operation. When the pattern is matched then additional features
can be added to the nodes of the parse graph and is the mechanism of enriching the
parse graph. Coming back to our tense example above, once the pattern 7.9 is identified
then the clause can be marked with the tense feature. In the next section I address
the graph matching operation and then show how it works using pattern graphs.

7.4 Graph matching
So far we have discussed about constituency and dependency graphs and, in the
last section, I introduced pattern graphs. The intuition behind pattern graphs is
that they are meant to be matched against or found in other graphs. The pattern
graphs can be viewed as small reusable modules and as generalisations consisting of
structural patterns. I will address next what it means for two graphs to be the same,
i.e. isomorphic and how this sameness checking is used in the current work.

In mathematics structure-preserving mappings f : X → Y (from one object X to
the other Y ) of the same type are called morphisms. The morphism f : X→ Y is called
an isomorphism if there exists an inverse morphism g : Y →X such that f ◦g = idX

and g ◦f = idX .
In computer science, the graph matching operation is known as a (sub-)graph

isomorphism. Two graphs G = (VG,EG) and H = (VH ,EH) are isomorphic if there
exists a mapping from the nodes of graph G to the nodes of graph H, such that the
edge neighbourhood is preserved. In such a context the nodes are unique atomic
symbols functioning as node identifiers.

Graphs do not always have the same number of nodes (or edges). We say that a
graph is smaller than another one, denoted G≤H, when its number of nodes is less
than that of the other graph. In such cases, for two graphs G and H where G < H,
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the (sub-)graph matching task is redefined to establishing isomorphism(s) from G to a
sub-graph of H.

Definition 7.4.1 (Graph matching). For two graphs G and H, where G≤H, graph
matching is the operation of finding an isomorphism between G and H.

Definition 7.4.2 (Graph isomorphism). An isomorphism of graph G = (VG,EG) and
H = (VH ,EH) is a bijective function f : VG→ VH such that if any two nodes u,v ∈ VG

from G are adjacent (u,v) ∈ EG then f(u),f(v) are adjacent in H (f(u),f(v)) ∈ EH .

Definition 7.4.3 (Sub-graph isomorphism). Given two feature rich graphs G =
(VG,EG) and H = (VH ,EH), G is sub-graph isomorphic to G (denoted G⊆H) if there
is an injective function f : VG→ VH such that

• ∀v ∈ VG,f(v) ∈ VH and

• any two nodes adjacent in G, (u,v)∈EG, are also adjacent in H, (f(u),f(v))∈EH

1 2

3

(a) The pattern graph

a b

c d

(b) The target graph

Fig. 7.13 Sub-graph isomorphism {1=a, 2=b, 3=c}

Figure 7.13a depicts a labelled graph that is isomorphic to a sub-graph in Figure
7.13b. The example graphs presented in Figure 7.13 have atomic labels as nodes
and the isomorphism is established as a mapping between labels. Section 7.1 above
mentioned that the graphs considered in this thesis have feature structures as their
nodes and no atomic nodes. But in case of feature rich graphs additional rules to
establish the isomorphism need to be provided because there are multiple ways of
approaching it.

Lets look at Figure 7.14 where the graph nodes are feature structures using features:
f1 and f2. One way to approach isomorphism in this scenario is by the value of one
feature, for example f1. Then we can identify two sub-graph isomorphisms: {1=a,
2=b, 3=c} and {1=b, 2=d, 3=e}. This approach, besides additional specification what
values to compare, i.e. f1s, is the same as providing a sub-graph isomorphism on the
labelled graphs from Figure 7.13.
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f1: 1
f2: scissors

f1: 2
f2: paper

f1: 3
f2: rock

(a) The pattern graph

f1: a
f2: scissors

f1: b
f2: paper

f1: c
f2: rock

f1: d
f2: scissors

f1: e
f2: rock

(b) The target graph

Fig. 7.14 An example of rich sub-graph isomorphism

In addition to the rule above, lets add a constraint that the isomorphism is not only
a mapping between the feature values (numbers to letters) but also that the mapped
values are identical (strict value equality). If we consider the strict equality rule applied
on f1 feature, there is no isomorphism between the two graphs because first one uses
numbers {1, 2, 3} and the second uses letters{a, b, c, d}. Now if we turn to the values
of f2 and apply the same rule then there is one isomorphism possible {paper=paper,
rock=rock, scissors=scissors}. The second one, even if it is a cycle, {paper=paper,
rock=scissors, scissors=rock} is no longer acceptable because the “scissors” and “rock”
switched places in the target graph; it would have been acceptable as a mapping,
but not as strict value equality. Formally, the additional equality constraint can be
expressed on the graph isomorphism f as u = f(u).

This brings us to the idea that, in the feature rich (sub-)graph isomorphism, we need
to introduce a matching operator (denoted ⋗) for nodes. This means that we no longer
can use atomic symbol mapping but have to employ the matching operator. The node
matching operation is defined on feature structures. We say that a feature structure
may match another feature structure once, several times or not at all, FS1⋗FS2. This
intuition is expressed in Definition 7.4.6. The sub-graph isomorphism over the feature
rich graphs is captured in Definition 7.4.4 below.

Definition 7.4.4 (Rich sub-graph isomorphism). Given two feature rich graphs
G = (VG,EG) and H = (VH ,EH) and a matching relation ⋗, G is a sub-graph isomorphic
to H if there is an injective mapping f : VG→ VH such that

• each node in V is mapped to exactly one node in H, ∀v ∈ VG,f(v) ∈ VH and

• each node in G matches with its correspondent in H, ∀v ∈ VG,v⋗f(v) and

• any two nodes which are adjacent in G, are also adjacent in H, ∀(u,v) ∈
EG,∃

(
f(u),f(v)

)
∈ EH
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We already mentioned in the introduction of this section that pattern graphs are
considered as generalisations over parse graphs (constituency or dependency). The
pattern graphs are smaller and their nodes have fewer features specified. The parse
graphs have more nodes and features. We say that a parse graph instantiates a pattern
graph if there exists a rich sub-graph isomorphism. This operation is called pattern
graph matching and is defined in Definition 7.4.5 below.

Definition 7.4.5 (Pattern graph matching). Given a pattern graph G and an instance
(parse) graph H (either dependency or constituency), pattern graph matching is the
operation of finding a rich sub-graph isomorphism from G to H such that each pattern
node matches its corresponding instance node for each H, ∀v ∈ VG,v⋗f(v).

As mentioned before, nodes of the parse and the pattern graphs are feature structures.
I approach the matching between them in two steps: first, matching the feature names
in Definition 7.4.6, and second, matching the feature values in Table 7.2. In order to
simplify and make explanations clear, I will further refer to the feature structures that
constitute nodes in the pattern graphs as pattern feature structures and the feature
structures that constitute nodes in the instance graphs as instance feature structures.

Definition 7.4.6 (Feature structure matching). A pattern feature structure V

matches an instance feature structure U if and only if every feature in V has a
corresponding feature U and their values match; that is ∀fV ∈ V,∃fU such that
name(fV ) = name(fU ) and val(fV )⋗val(fU ).

According to Definition 7.1.3, the values of feature structures can be either atomic
(numbers, strings, symbols, etc.), denoted atomic, or one of the conjunction sets: SAND,
SOR, SXOR and SNAND. For simplicity, the option of nested feature structures is
excluded in the current work even though it is perfectly viable configuration. Con-
sequently, the matching relation takes into consideration the type of the compared
elements in addition to how they relate to each other, including comparisons between
set and atomic values. Note that this relation is not symmetric, i.e. not commutative
because the subsequent relations used in the definition, i.e. set inclusion and set
subsumption, are not symmetric. This means that A⋗B ̸= B⋗A.

I will also remind here that the function τ(S), defined in Section 7.1, returns the
type of the feature value. I extend its definition here to handle also atomic data types
as follows: τ : x→ {atomic,SAND,SOR,SXOR,SNAND}. The matching rules have
to be defined for each possible pair of types returned by the function τ yielding 25
possibilities. Table 7.2 provides matching relations for each pair of types where the
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rows represent value types of the pattern features, denoted τ(v), and the columns
represent value types of the instance features, denoted τ(u). Each table cell contains a
comparison expression returning a truth value. Cells with a bottom sign ⊥ mean that
there can be no match between these types no matter the values.

τ(v)\τ(u) atomic SAND SOR SXOR SNAND

atomic v = u v ∈ u ⊥ ⊥ v /∈ u
SAND ⊥ v ⊆ u ⊥ ⊥ ⊥
SOR v ∋ u v∩u ̸= ∅ v ⊇ u v ⊇ u ⊥

SXOR v ∋ u ⊥ ⊥ v ⊇ u ⊥
SNAND v ̸∋ u v∩u = ∅ v∩u = ∅ v∩u = ∅ v ⊆ u

Table 7.2 Strict matching between pattern and instance feature values organised by value
type

For example, if both values are of atomic type then in order to match they have to
equal. If the τ(v) is atomic and the τ(u) is an AND set then v needs to be among the
set of values constituting u; whereas if the τ(u) is an OR or XOR set then these values
do not match, designated by the bottom sign ⊥. The same reading applies to the rest
of the table for each pair of value types.

A more permissive matching is defined in Table 7.3. Here, on the instance feature
values, the two types of disjunction (OR and XOR) and the negated conjunction
(NAND) are interpreted as possibly matching and are provided with the corresponding
relation, whereas in the previous definition these cases were completely excluded. The
permissive match is rarely used in this work but it is nevertheless useful for cases of
instance graphs where the feature values could not be assigned with a certainty but as
a disjunction of either one or the other.

τ(v)\τ(u) atomic SAND SOR SXOR SNAND

atomic v = u v ∈ u v ∈ u v ∈ u v /∈ u
SAND ⊥ v ⊆ u v ⊆ u v ⊆ u v∩u = ∅
SOR v ∋ u v∩u ̸= ∅ v ⊇ u v ⊇ u v\u ̸= ∅

SXOR v ∋ u ⊥ ⊥ v ⊇ u |v\u|= 1
SNAND v ̸∋ u v∩u = ∅ v∩u = ∅ v∩u = ∅ v ⊆ u

Table 7.3 Permissive matching between pattern and instance feature values organised by
value type

The permissive FS matching has been developed together with the strict FS
matching as it was not clear at the beginning of the work which one is suitable for
current purposes. After conducting several tests it became clear that strict matching
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is the one yielding the better results because it yields fewer matches. This is especially
visible in the cases of Transitivity enrichment when too many incorrect patterns are
qualified by the permissive operator. Now that pattern graph matching is explained,
lets take a look next at how it is used to perform operations on instance graphs.

7.5 Pattern based operations
Patterns are searched for in a graph always for a purpose. Graph isomorphism is
only a precondition for another operation, be it a simple selection (i.e. non-affecting
operation) or an affecting operation such as feature structure enrichment (on either
nodes or edges), inserting or deleting a node or drawing a new connection between
nodes. The end goal is embedded into the pattern as operation specification: so that
when the pattern is identified, also the desired operation(s) is(are) triggered. I call
such graph patterns operational pattern graphs (Definition 7.5.1). Next I explain how
to embed operations into the graph pattern and how they are used in the parsing
algorithm.

Definition 7.5.1 (Operational graph pattern). An operational graph pattern is a
pattern graph that has at least one node operation and arg features.

The operational aspect of the pattern graph is specified in the node FS via three
special features: id, operation and arg. The id feature (the same as for relative node
ordering) is used to mark the node for further referencing as an argument of an
operation, the operation feature names the function to be executed once the pattern is
identified and the arg feature specifies the function arguments if any are required; they
are tightly coupled with function implementation. If a node has the feature operation
then it is called an operational node. Also, in the current implementation, the special
features such as operation, arg, id, precede etc. are excluded from the pattern matching
operation because they have functional roles linked to the implementation and do not
describe the linguistic properties of a graph node.

So far the implemented operations are insert, which is used for creation of empty
nodes, delete, which is used for corrections of predictable errors in dependency graphs
and the update operation, which is the main mechanism behind graph enrichment.
These operations are depicted in Figure 1.8 of the parser pipeline architecture from
Section 1.7.4.

Operative patterns are enacted once they are matched to an instance graph. An
operative pattern graph G is enacted on an instance graph H in two steps. First,
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the pattern graph is strictly matched to an instance graph. If an isomorphism f is
found then, second, for every operational node v ∈G,∃att(v) = operation, the specified
operation op = val(v.operation) and the corresponding node of the instance graph
u ∈H, the operation is executed on the node of the instance graph op(u). If the arg
feature is provided then the operation is executed with that additional argument.

7.5.1 Pattern based node update

As mentioned above the pattern based node update is used for adding onto the
constituency graph new features. Lets consider Example 103 whose constituency graph
is provided in Figure 7.15 and the task is to assign the agent feature to the subject
node and affected-possessed feature to the complement. This can be done using the
pattern graph matching with a feature update operation indicated on subject and
complement nodes. The PG depicted in Figure 7.16 fulfils this purpose because it
matches the constituency graph from Figure 7.15 and has the corresponding update
operations indicated.

(103) He gave the cake away.

(104) He gave her the cake.

class: clause

element: subject
word: He

element: main verb
word: gave

element: complement
class: nominal group

element: deictic
word: the

element: thing
word: cake

element: adjunct
word: away

Fig. 7.15 Constituency graph corresponding to Example 103

element:clause

element: subject
operation: update

arg1:{participant: agent}

element: main verb
word: give

operation: update
arg1:{process: possessive}

element: complement
operation: update

arg1:{participant: affected-possessed}

Fig. 7.16 A graph pattern for inserting agent and affected-possessed participant roles
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class: clause

element: subject
participant: agent

word: He

element: main verb
process: possessive

word: gave

element: complement
participant: affected-possessed

class: nominal group

element: deictic
word: the

element: thing
word: cake

element: adjunct
word: away

Fig. 7.17 The resulting constituency graph enriched with participant roles

Consider the same pattern, but applied to a sentence in Table 7.4. This clause has
two complements and they are by no means distinguished in the pattern graph. When
such cases are encountered the PG yields two matches (each with another complement)
and the update operation is executed on both of the complements. To overcome such
cases the PG allow defining negative nodes, meaning that those are nodes that shall be
missing in the target graph.

For example to solve the previous case I define the PG depicted in Figure 7.18
whose second complement is a negative node and it is marked with dashed line. This
pattern is matched only against clauses with exactly one complement leaving aside the
di-transitive ones because of the second complement.

class:clause
element:subject element: main verb element:complement element:complement

He gave her the cake.
Table 7.4 CG with a di-transitive verb

element:clause

element:subject,
operation:update,

arg1:{participant:agent}

element:complement,
operation:update,

arg1:{participant:posessed}
element:complement

Fig. 7.18 PG for inserting agent and possessed participant roles to subject and complement
nodes only if there is no second complement.

The current implementation of matching the patterns that contain negative nodes
is performed in two steps. First the matching is performed with the PG without the
negative nodes and in case of success another match is attempted with the negative
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nodes included. If the second time the matching yields success then the whole matching
process is unsuccessful, but if the second phase fails then the whole matching process
is successful because no configuration with negative nodes is detected.

For the sake of explanation I call the pattern graph with all the nodes (turned
positive) big and the pattern graph without the nodes marked negative small. So then,
matching a pattern with negative nodes means that matching the big pattern (with
negative nodes turned into positive) should fail while matching the small one (without
the negative nodes) should succeed.

7.5.2 Pattern based node insertion

In English there are cases when a constituent is missing because it is implied by the
(grammatical) context. These are the cases of Null Elements treated in the Chapter 6.
Consider Example 105.

(105) Albert asked [∅ to go alone].

There are two clauses: first in which Albert asks something and the second where
he goes alone. So it is Albert that goes alone, even though this is not made explicit
through a subject constituent in the second clause. Such implied elements are called
null or empty constituents as discussed in detail in Section 6.2. Table 7.5 provides a
constituency analysis for the example and the null elements (in italic) are appended
for the explicit grammatical account. In Section 6.3 I offered grammatical account of
the graph patterns characterising null elements and in Section 9.3 I will describe how
these patterns are used to insert null elements into the parse graphs; extensively using
the pattern based node insertion treated here.

class:clause
element:
subject

element: main
verb

element: complement, class:clause

element:
subject

element: main verb element:
adjunct

Albert asked Albert to go alone.
Table 7.5 The constituency analysis that takes null elements into consideration

To insert a new node the PG needs to specify that (1) the inserted node does not
already exist, so it is marked as a negative node, (2) specify operation:insert in the FS
of the same node and (3) provide the id of the referenced node as FS argument (arg1)
if one should be taken.
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class:clause

element:subject,
id:subj1

element:complement,
class:clause

element:subject,
operation:insert,
arg1:{id:subj1}

Fig. 7.19 A graph pattern to insert a reference node

In operational terms, the insertion operation means that the whole pattern will
first go through a matching process. If there is a match then the new node is created.
A important thing about the created node is that it may keep a reference to another
node or not. In our example it does keep a reference to the subject of the dominant
clause. If so, then all the features of the referee node are inherited by the new node.
And if any are additionally provided then the new node overrides the inherited ones.

This section concludes our journey into the world of graph patterns, isomorphisms
and graph based operations. This leaves only one more important data structure to
cover: the system networks.

7.6 Systems and Systemic Networks
In Section 3.2.4 I presented the basic definition of system and system network and
the notations as formulated in the SF theory of grammar. The formal definition of
the system network differs from the one available in the SFL literature. Next I briefly
highlight how before providing the actual definitions.

In this work the system networks are simplified to hierarchies of disjoint features
maintaining the entry conditions. This corresponds to the type logic component of
SF grammar described in O’Donnell (1993) where the syntagmatic organisation is
restricted to a single functional layer. The reason behind this simplification is because
the hierarchy of disjoint feature structures are perfectly suitable to correctly derive
the complete set of parent features from a one or several manual selections. Moreover
the systemic networks are not interconnected into a uniform grammar but separate
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modules describing selected aspects of language. Once the complete set of features is
derived then it is associated with a graph pattern. This pattern graph is then used
in the parse graph enrichment process described in Section 1.7.4. Next I define the
necessary concepts serving the current work. First I introduce the abstract concept of
hierarchy defined in a computer science fashion by Pollard & Sag (1987: 30), which is a
formal rephrasing of Definition 3.2.1 stating that the hierarchy is a logical precedence
relation among the terms of a network system.

Definition 7.6.1 (Hierarchy). A hierarchy is a finite bounded complete partial order
(∆,≺).

The next concept that requires closer formalisation is that of a system first estab-
lished in Definition 3.2.10. For precision purposes, this has a narrower scope without
considering the system networks or precondition constraints; these are introduced
shortly afterwards building upon the current one.

Definition 7.6.2 (System). A system Σ = (l,P,C) labelled l is defined by a finite
disjoint set of distinct and mutually defining terms called a choice set C (of type SXOR)
and an entry condition set P of type SXOR establishing the delicacy relations within a
system network.

There is a set of functions defined that apply to systems: label(Σ) = l is a function
returning the system name, choices(Σ) = C is a function returning the choice set,
precondition(Σ) = P is a function returning the set of entry condition features, and
the size(Σ) return the number of elements in the system choice set.

Definition 7.6.3 (Systemic delicacy). We say that a system S1 is more delicate than
S2, denoted as S1 ≺ S2, if

1. both system belong to the same system network: S1,S2 ∈ SN

2. there is at least a feature but not all of S1 which belongs to the entry condition
of S2 i.e. choices(S1) ∈ precondition(S2) or

3. there is another system S3 that has among its entry conditions a feature of S1

and whose features are among the entry conditions of S2, i.e. ∃S′
1 ∈ SN such

that choices(S1) ∈ precondition(S3)∧ choices(S′
1) ∈ precondition(S2)

Systems are never used in isolation. SF grammars usually are extensive networks
of interconnected systems defined as follows.
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Definition 7.6.4 (System Network). A system network SN = (r,Γ) is defined
as a hierarchy over a set of systems Γ where the order is that of systemic deli-
cacy starting from a root feature r such that for any system in the network either
there is another less delicate system or its entry condition is the root feature i.e.
∀Si ∈ Γ,∃Sj ∈ Γ|Sj ≺ Si∨precondition(Si) = r.

In a systemic network SN where a system Sl depends on the choices in another
system Se (i.e. the preconditions of Sl are features of Se) we call the Se an early(older)
system and the Sl a late(younger) system. This is just another way to refer to ordering
systems according to their delicacy but applying this ordering to execution of systemic
selection.

The graphical notation of system networks was introduced in Section 3.2.4. Con-
sidering the above definitions, the system network can be represented as a graph
where each node is a system feature and edges represent precondition dependencies.
Figure 7.20 depicts examples of a system network with three systems. In Figure 7.20a
the entry conditions are SAND sets only, and in Figure 7.20b the entry condition
for S3 is OR(f2,f4) depicted with dashed lines. In such a graph, all system features
must be unique i.e. ∀S1,S2 ∈ SN : choices(S1)∩ choices(S2) = ∅ and there may be no
dependency loops.

S1 XOR
f1

f2

f3

∅

S2 XOR
f4

f5

S3 XOR
f6

f7

(a) System Network with conjunctive entry
conditions

S1 XOR
f1

f2

f3

∅

S2 XOR
f4

f5

S3 XOR
f6

f7

(b) System Network with disjunctive entry
condition for S3

Fig. 7.20 Example System Network presented as graphs

For a chosen feature in the system network it is possible to trace a path to the
root feature by traversing systems through their preconditions. Generating such a
path is equivalent to preselecting the features in all earlier systems. This is needed for
assigning a complete set of feature selections to a pattern graph before it is used in the
parse graph enrichment. Conversely, in the verification process it is necessary to check
whether a set of arbitrary features belong to a consistent and complete selection path.
Next I address the concepts needed for this task and how it is executed.
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The system networks from Figure 7.20 can be unpacked into a feature network
(Definition 7.6.5 which is referred to as a maximal selection graph) interconnected by
system entry conditions. In Figure 7.21 two feature networks are depicted corresponding
to the system networks above. The dashed lines mean disjunction and continuous ones
mean conjunction of entry features.

i1

i2

i3

i5

i4

i6

i7

(a) Feature Network graph with conjunctive
entry conditions only

i1

i2

i3

i5

i4

i6

i7

(b) Feature Network graph with some dis-
junctive entry condition

Fig. 7.21 Example Feature Network graphs

The feature network can be defined in relation to the system network as follows.

Definition 7.6.5 (Feature Network). For a given system network SN = (r,Γ), a
Feature Network FN(N,E) is a directed graph whose nodes N are the union of choice
sets of the systems Γ and the edges E connect choice features with the entry condition
(precondition) features of the systems Γ.

Given a feature network FN(N,E) and a feature of the network f ∈N a selection
path SP (N,E) is a connected sub-graph of traversal paths between the root of the
feature network and the feature f . A complete selection path is a selection path from
one of the leaf nodes up to the network root.

POLARITY-
TYPE

positive

negative NEGATIVE-
TYPE

interpersonal INTERPERSONAL-
TYPE

syntactic SYNTACTIC-
TYPE

verbal-marker

nominal-marker

adverbial-marker

morphological

textual TEXTUAL-
TYPE

continuative-marker

conjunctive-marker

Fig. 7.22 Polarity System

The selection path is generated by traversal of the feature network from a given
feature node towards the root node. If the node has no incoming edge then the result
of traversal is a leaf node and the resulting selection path is complete. For example,
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if verbal-marker feature is selected in the system network depicted in Figure 7.22
the traversal of the corresponding feature network toward the root feature yields the
selection path negative – interpersonal – syntactic – verbal-marker. This path is also
complete with respect to the network because there are no systems younger than the
SYNTACTIC-TYPE system.

When the system networks define more than one feature in the precondition it
leads to split paths. This means that there is more than one feature that needs to or
can be preselected. If the edge is a continuous line (depicted in Figure 7.21a) the both
variants are part of the same selection path. In case the edge is a dashed line (depicted
in Figure 7.21b) the paths are considered alternative and a further decision making
mechanism must be employed to reduce the disjunction to a single variant. In the
current work no such mechanism is employed and the parse result is presented with
both alternatives. In most cases the entry condition is constituted of a single feature,
when there are multiple ones, usually they are conjuncted and only in a small minority
of cases entry condition is a disjunction of features.

Algorithm 1: Naive backwards induction of a selection path
input : feature, system network

1 begin
2 add feature to empty selection path
3 for system in traversal path to the root of system network:
4 get entry condition features of system
5 add entry condition features to the selection path
6 return selection path
7 end

The pseudo code for creating a selection path as described above is outlined in
Algorithm 1. Given a system network and a random non-root feature belonging to the
network, it traverses the systems, one by one, towards the root and collects the entry
conditions of each system into a selection path.

7.7 On realisation rules
The previous section explains that in the current work system networks are simplified
to a taxonomy of features and no realisation rules are considered. This section explains
how the pattern graphs are a substitute for the realisation rules and how they relate
to each other.
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The realisation rule of a systemic feature specifies how that feature is realised
as a syntagmatic structure down to form using operations such as insert or expand
constituent, order two constituents, preselect another feature, lexicalise etc. They
are the essential ingredients binding the paradigmatic description in a syntagmatic
structure. Robin Fawcett emphasises the role of realisation rules in the composition of
system networks. He often stresses “no system networks without realisation rules”. It
is the instantiation process that in Halliday’s words “is the relation between a semiotic
system and the observable events or ‘acts’ of meaning” (Halliday 2003b: emphasis
added). The realisation rules for a systemic feature are the statement of operations
through which that feature contributes to the structural configuration (that is being
either generated or recognised) (Fawcett 2000: p.86).

In this work the graph patterns can be considered as bundles of realisation rules and
feature selections and therefore an approach to replace the realisation rules. This idea
is implicitly covered in Section 7.3 and here I explicitly describe it through an example.
Consider the fragment of the Mood system network from Halliday & Matthiessen
(2013b: 162) depicted in Figure 7.23. This example aims at three feature selections:
major, indicative and declarative. The root feature in the system network is realised
through a constituent clause, any of the selected features is ascribed directly to it,
and the selection of any subsequent features impacts the elements below through the
associated realisation rules. The pattern graph that captures selection of the major
feature is depicted in Figure 7.24.

MOOD-
TYPE

imperative

indicative

+Subject +Finite
] INDICATIVE-

TYPE

declarative

Subject^Finite

interrogative

FINITNESS
finite

+Subject +Finite

non-finite

FREEDOM

free

bound

+Main Verb

clause
STATUS

major

minor

Fig. 7.23 An adapted fragment of a Mood system from (Halliday & Matthiessen 2013b: 162)

class:clause, STATUS:major

element:Main Verb

Fig. 7.24 A graph pattern for major feature selection in Figure 7.23
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Figure 7.25 depicts the pattern graph corresponding to the selection of indicative
feature. Here the clause constituent receives the whole selection path up to the root
feature clause – major – free – indicative and in addition two more constituents are
required: Subject and Finite. Almost the same pattern graph is valid in case of selecting
bound feature instead of indicative.

class:clause, STATUS:major, FREEDOM:free,
MOOD-TYPE:indicative

element:Main Verb element:Subject element:Finite

Fig. 7.25 A graph pattern for indicative feature selection in Figure 7.23

class:clause, STATUS:major, FREEDOM:free,
MOOD-TYPE:indicative, INDICATIVE-TYPE:declarative

element:Main Verb element:Subject,
precede:fnt

id:fnt,
element:Finite

Fig. 7.26 A graph pattern for declarative feature selection in Figure 7.23

In Figure 7.26 the selection is taken one step further to the declarative feature.
The associated realisation rule is ordering the Subject and Finite elements. This is
captured via the “precede:fnt” where “fnt” is the id of the Finite constituent.

MOOD-TYPE:indicative, INDICATIVE-TYPE:declarative

element:Subject,
precede:fnt

id:fnt,
element:Finite

Fig. 7.27 A graph pattern for the selection if indicative and declarative features in Figure
7.23

The pattern does not need to refer to the complete selection path but can be limited
to the context of a few related features. For example, Figure 7.27 represents selection
of the indicative and declarative features in isolation. In this case the class of the
parent constituent (that in the above cases is the clause) is no longer specified because
the restricted selection path and thus the root of the network is not reached. Also
none of the preselected features major and free are specified either.
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One limitation, however, of the graph patterns is dealing with conflation phenomena.
For example, the cases of the Main Verb conflated with Finite elements have to be
accounted by with pattern graphs where one constituent has two functions instead of
pattern graphs with two separate constituents each with the corresponding function.
This limitation can be addressed in the future by manipulating the definition of the
feature structure matcher described in Section 7.4.

7.8 Summary
This chapter described from a computer science perspective the SFL concepts introduced
in Chapter 3 and prepares the ground for the following chapters that address the
implementation details of the Parsimonious Vole parser.

A central theme covered here are the graphs and graph patterns. They play the key
role in identifying grammatical features in dependency and constituency structures.
They are also an excellent candidate for expressing systemic realisations which have
not been considered in the current work as being associated with the systemic features.

Authoring realisation rules is a difficult task and requires proper tool support. The
same is the case for graph patterns and even more so when they need to be related
to systemic networks or network parts. The system network authoring tool, such as
the one available in UAM Corpus Tool (O’Donnell 2008b), could provide also a graph
pattern editor allowing association of graph patterns to systemic features. This would
have to be embedded into a module implementing a grammar development environment.
Building such an editor is an opportunity to create additional value if taken up in the
future developments. Also employing a mature specialised technology for manipulating
large amounts of graph data as available in the Semantic Web suite of tools is another
direction for the future described in the Section 11.2.

In the next chapter I describe the parsing pipeline and how each step is implemented
starting from the Stanford dependency graph all the way down to a rich constituency
systemic functional parse structure.



Chapter 8

Creating the systemic functional
constituency structure

The previous chapter introduced the building blocks for the parser pipeline algorithm
depicted in Figure 1.8. This chapter covers the entire first phase of the algorithm called
“graph building”. The input for the parsing pipeline is made up of Stanford dependency
parse graphs. The dependency graphs are sometimes erroneous or treat certain linguistic
phenomena in a way incompatible with the current approach. Therefore a preprocessing
stage is needed to correct and canonicalise the dependency graphs; this is covered
in Sections 8.1 and 8.2. Then these graphs are rewritten into systemic constituency
graphs. The process by which this happens is covered in Section 8.3.

8.1 Canonicalisation of dependency graphs
Beside stable errors, there are two other phenomena that are modified in the prepro-
cessing phase: copula and coordination. They are not errors per se but represent simply
an incompatibility between how the Stanford parser represents them and how they
need to be represented for processing by the current algorithm and grammar.

In this section I describe a set of transformation operations on the dependency graph
before it is transformed into a systemic constituency graph. The role of the preprocessing
phase is to bring in line aspects of the dependency parse to a form compatible with the
systemic constituency graph creation process by (a) correcting known errors in DG, (b)
cutting down some DG edges to form a tree, and (c) changing the Stanford parser’s
standard handling of copulas, coordination and few other phenomena. This is achieved
via three transformation types: (a) relabelling of edge relations, (b) relabelling node
POS, and (c) reattachment of nodes to a different parent.
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8.1.1 Loosening conjunction edges

The Stanford parser employs an extra edge for each of the conjuncts such that there
is one indicating the syntactic relationship to the child or parent nodes (just like for
any other nodes) and additionally one that shows the conjunction relationship to its
sibling nodes. In this step, the parent or child relations except for the first conjunct
are removed leaving only the sibling relations.

Some common patterns occurring between noun, verb and adjective conjuncts are
depicted in Figures 8.1 - 8.4.

Cats and dogs can be friends .

nsubj

nsubj
conj_and

(a) Composite subject

Please give me a fork and a knife

dobj

dobj

conj_and

(b) Composite object

Fig. 8.1 Conjunction of nouns in subject and object positions

The main reason these extra edges need to be removed is to avoid traversal of the
same node via different paths. This, in the current algorithm, has as consequence
execution of the same operation multiple times such as for example creation of multiple
constituents from the same DG node, which is of course undesirable. For example,
if multiple subject relations occur in the DG then multiple subjects are going to be
instantiated in CG and this is grammatically incorrect. Rather only one complex unit
needs to be created with the subject role composed of two noun phrases; this was
discussed in Section 3.4.6.

The way I resolve this problem is by removing functional edges to/from each
conjunct except the first one. There are two generic patterns in Figures 8.5a and 8.6a
correspondingly with incoming and outgoing edges that are transformed into the forms
depicted in 8.5b and 8.6b.

I split the cases into two: patterns with incoming dependency edges and outgoing
ones. First, see the pattern of conjuncts with incoming dependency relations represented

It is hard for both me and you .

prep_for

prep_for

conj_and

Fig. 8.2 Conjunction of prepositional phrases
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He is strong and brave .

nsubj

nsubj

conj_and

Fig. 8.3 Conjunction of copulatives sharing the subject

He came home and immediately washed his hands .
nsubj

nsubj
conj_and

Fig. 8.4 Conjunction of verbs sharing the same subject

in Figure 8.5a and exemplified in Figures 8.1a - 8.2. In SFG terms it corresponds to
cases when the functional element of a parent constituent is filled by a complex unit
below.

X

Conj0 Conj... Conjn

rel1 rel1 rel1

conj conj

(a) Conjuncted elements with incoming
tightly connected dependencies

X

Conj0 Conj... Conjn

rel1

conj conj

(b) Conjuncted elements with incoming
loosely connected dependencies

Fig. 8.5 From tightly to loosely connected incoming conjuncted elements

The second is the pattern of conjuncts with outgoing dependency relations depicted
in Figure 8.6a. In SFG terms it correspond to cases when a unit is sharing an element
with another conjunct unit. These are mainly the cases of conjuncted verbs or copulas
and are further discussed in the Chapter 6 about null elements. In GBT terms, the
second to last conjuncts may omit, for example, the subject constituent if the conjuncts
are verbs or copulas as in Figures 8.3 - 8.4.

8.1.2 Transforming copulas into verb centred clauses

In the Stanford dependency grammar copular verbs are treated as dependants of
their complements (see Figures 8.7a and 8.7b) because of the intention to maximise
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X

Conj0 Conj... Conjn

rel1 rel1 rel1

conj conj

(a) Conjuncted elements with outgoing
tightly connected dependencies

X

Conj0 Conj... Conjn

rel1

conj conj

(b) Conjuncted elements with outgoing
loosely connected dependencies

Fig. 8.6 From tightly to loosely connected outgoing conjuncted elements

She is beautiful .

root

cop
nsubj

(a) Simple copulative

He is strong and brave .

root
nsubj

nsubj

cop
conj_and

(b) Conjunction of copulatives sharing the subject

Fig. 8.7 Simple and conjuncted copula in dependency graphs

connections between content words. This configuration breaks the rule of the main
verb being the head of clause discussed in Sections 4.1.1 and 4.1.2.

Moreover, despite that a variety of verbs are recognised as copulative e.g. act, keep,
sound, etc. the Stanford parser provides copula configurations only for the verb to be
leading to unequal treatment of copular verbs.

This case is sometimes accompanied by two relations that create cycles in the DG.
They are the xsubj, the relation to a controlling subject and ref, the relation to a
referent. The two relations are removed in this parsing phase and their resolution is
transferred to the semantic analysis stage of the algorithm.

To make the copulative verb the root of its clause, the following rules are imple-
mented. First, some relations are transferred from the copula complement (adjective
JJ or noun NN) to the copulative verb. The transferred relations are listed in Table
8.1 which distinguishes them based on the part of speech of the copula complement.

part of speech dominated relation
NN dep, poss, possesive, amod, appos, conj, mwe, infmod, nn, num,

number, partmod, preconj, predet, quantmod, rcmod,ref, det
JJ advmod, amod, conj

Table 8.1 Relations dependent on the POS of the dominant node
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Second, all the outgoing connections from the copula complement are transferred
to the verb except those listed in the second column of Table 8.1; these relations must
stay linked to the NN or JJ nodes. Third the cop relation is deleted. Fourth, all the
incoming relations to the copula complement are transferred indistinguishably to the
verb because these are all clause related and should be linked to the clause dominant
node. Finally the dobj link is created from the verb to the complement noun/adjective.

Figure 8.8a represents the generic pattern of copulas in Stanford DGs. The outgoing
relations are distinguished between those in the filter as rel_dep and the rest simply as
rel while the incoming relations are not discriminated. Figure 8.8b captures the final
state of the transformation where the filtered outgoing relations stay attached to the
complement node while the rest incoming and outgoing relations are moved to the
verb.

VB JJ/NN
cop

rel_dep0..nrel0..n
rel0..n

(a) Generic pattern for copulas in Stanford
parser.

VB JJ/NN
dobj

rel_dep0..nrel0..nrel0..n

(b) Generic pattern for copulas after the
transformation (the same as non-copular
verbs).

Fig. 8.8 Generic patterns for dealing with copulas in dependency graphs

In case of conjuncted copulas as in the example in Figure 8.7b, the approach is
slightly complicated by the fact that the copula resolution algorithm should be executed
for each copula conjunct, however because of the previous step which is loosening the
conjunction and removing graph cycles, only the first copula conjunct is concerned.

8.1.3 Non-finite clausal complements with adjectival predi-
cates (a pseudo-copula pattern)

Figure 8.9 represents a dependency parse exemplifying a clausal complement with an
adjectival predicate. In this analysis there is a main clause governed by the verb to
paint and a second one by the adjective white. In SFL a simple clause, such as the one
depicted in Figure 8.9, receives a different analysis as is represented in Table 8.2.

The xcomp relation is defined in Marneffe & Manning (2008a) to introduce non-
finite clausal complement without a subject. Stanford dependency grammar allows
adjectives (JJ) and nouns (NN) to be heads of clauses, but only when they are a part
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Perhaps Sarah painted the wall white .

root
advmod

nsubj det nsubj

xcomp

Fig. 8.9 Dependency parse for clausal complement with adjectival predicate

Perhaps Sarah painted the wall white.
Adjunct Subject Finite/Main Verb Complement Complement

Agent Material Action Affected Attribute
Table 8.2 SFG analysis with attributive adjectival complement

of a copulative construction. In Figure 8.9 it is not the case, there is no copulative verb
to be and also the wall receives the subject role in the complement clause which should
be absent. So I treat this as a misuse of the xcomp relation and the adjective should
not be treated as governing a new clause but rather non-clausally complementing the
verb to paint. This is in line with SF grammars where adjectival predicates are not
allowed.

Certainly, depending on the linguistic school, opinions may diverge on the syntactic
analysis comprising one or two clauses. But when analysed from a semantic perspective
it is hard to deny that there is a Material Process with an Agent and Affected thing
which is specifying also the resultant (or goal) Attribute of the Affected thing.

To accommodate such cases the dependency graph is changed from the pattern in
Figure 8.10a to form Figure 8.10b. The xcomp relation is transformed into dobj and
the subject of the embedded clause (if any) becomes the direct object (dobj) in the
main clause. This is not a correct treatment from the dependency grammar point of
view but it suits the purpose of the current work. As the dobj relation is projected
later into a Complement element in the constituency structure, it fits well the case of
adjectival Complements in the Cardiff grammar.

VB

NN JJ

xcomp

nsubj

(a) Adjectival clausal complement

VB

NN JJ

dobj
dobj

(b) Adjectival clausal complement as sec-
ondary direct object

Fig. 8.10 From adjectival clausal complement to two clausal complements
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8.2 Correction of errors in dependency graphs
The Stanford Parser is based on results from various machine learning (ML) techniques
applied to parsing. Its accuracy was increased over time to ≈ 92% for unlabelled
attachments and ≈ 89% for labelled ones (in version 3.5.1). This section addresses
known error classes of wrongly attached nodes or wrongly labelled edges and nodes.
These errors have been discovered during the development of the Parsimonious Vole
parser and are corrected to increase the result accuracy.

As the Stanford parser evolved, some error classes changed from one version to
another (v2.0.3 – v3.2.0 – 3.5.1). Also the set of dependency labels for English initially
described in Marneffe & Manning (2008a,b) changed to a cross-linguistic one (starting
from v3.3.0) described in Marneffe et al. (2014).

As noted by Cer et al. (2010) the most frequent errors are related to structures
that are hard to attach, i.e. prepositional phrases and relative clauses. During the
implementation of the current parser a set of errors were discovered, the most frequent
of which are described in this section along with how are they treated. These errors
are specific to Stanford parser versions v2.0.3 – 3.2.0. This section may constitute a
valuable error analysis feedback for the authors of Stanford dependency parser.

8.2.1 Free prepositions and prep relation

As noted before, only the collapsed version of the DGs are taken as input. This means
that no pure prep relations should occur but their expanded version with the specific
preposition appended to the relation name, i.e. prep_xxx, are used.

This is not always the case, especially with phrasal verbs, where the prt relations
are mislabelled as prep. The correction consists in changing the prep (Figure 8.11a)
into prt (Figure 8.11b) if the preposition node has no children, e.g. pobj.

VB IN
prep

(a) Mislabelled relation to free preposition.

VB IN
prt

(b) Corrected relation to free preposition
as verbal particle

Fig. 8.11 Treatment of free preposition connected to a verb as verbal particles
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8.2.2 Non-finite clausal complements with internal subjects

The xcomp relation stands for open clausal complements of either a verb(VB) or
adjective (JJ/ADJP). The latter is actually transformed as discussed in Section 8.1.3.
The open clausal complement defined in Lexical Functional Grammar (Bresnan 2001:
p270–275) is always non-finite and does not have its own subject. However sometimes
the xcomp relation appears either (a) with finite verbs or (b) with its own local subjects;
both cases correspond to the definition of the ccomp relation.

To address this I transform all the instances of xcomp relation to ccomp if the
dependent verb has a local subject (nsubj) or a finite verb as depicted in Figures 8.12a
- 8.12b.

VB1

NN VB2
nsubj

xcomp

(a) Mislabelled clausal complement

VB1

NN VB2
nsubj

ccomp

(b) Corrected clausal complement

Fig. 8.12 Treatment of the non finite clausal complements with internal subjects

8.2.3 First auxiliary of non-finite POS

Sometimes the first auxiliary in a clause is mistakenly labelled as a non-finite verb.
For some words the exact POS is less important as it has no large impact on the CG
graph and features. But, in the case of first auxiliary verb of a clause, it makes a
substantial difference. It has an impact on determining the finiteness of the clause in
a later stage of the algorithm. The algorithm therefore checks the POS of the first
auxiliary according to the mapping defined in Table 8.3.

word POS notes
shall, should, must, may, might, can, could, will, would MD modals
do, have, am, are VBP present
has, is, does VBZ present 3rd person
did, had, was, were VBD past

Table 8.3 Mapping lexical forms of auxiliaries to their POS
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In this stage the part of speech of the first verb in a clause is checked whether it
is found in the list of words mentioned in Table 8.3. If it is present then the part of
speech is verified to coincide with the expected POS provided in the table. When they
do not coincide the POS is replaced according to the value in the table.

8.2.4 Prepositional phrases as false prepositional clauses

prepc is a relation that introduces, via a preposition, a clausal modifier for a verb,
adjective or noun. Assuming that the copulas had been changed as described in
subsection 8.1.2 then the head and the tail of the relation can only be a verb. However
when the relation head is not a verb (only nouns encountered so far) then the relation
needs to be corrected from prepc to prep introducing a prepositional phrase rather
than a subordinate clause.

VB1

IN

NN
prepc_xxx

(a) Mislabelled prepositional phrase as
clausal modifier

VB1

IN

NN
prep_xxx

(b) Corrected prepositional phrase

Fig. 8.13 Treating prepositional phrase links

8.2.5 Mislabelled infinitives

In English, the base form of the verb often coincides with present simple form (non
3rd person). Therefore the POS tagger sometimes mislabels infinitive (VB) as present
simple (VBP).

The algorithm checks the presence of the preposition to linked via aux dependency
relation positioned in front of the verb. If the preposition is present then the verb
POS is changed to VB which is the correct POS for an infinitive form. Conversely,
if the auxiliary preposition is not present the verb POS is changed into VBP, which
corresponds to the present simple form of the verb.

VBPTO
aux

(a) Infinitive mislabelled as present simple

VBTO
aux

(b) Correct infinitive

Fig. 8.14 Treating infinitives
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VBTO
aux

(a) Present simple mislabelled as infinitive

VBPTO
aux

(b) Correct present simple

Fig. 8.15 Treating present simple

8.2.6 Attributive verbs mislabelled as adjectives

In English, attributive verbs often have the same lexical form as their corresponding
adjectives. This is a reason for the POS being mislabelled as adjective (JJ) instead of
verb (VB) leading to situations when an adjective (JJ) has an outgoing subject relation
which means that its POS should actually be VB. The algorithm checks for such cases
and corrects the JJ POS into VBP (non 3rd person present simple).

JJX

nsubj,
nsubjpass

(a) Mislabelled attributive verb

VBPX nsubj,
nsubjpass

(b) Corrected attributive verb

Fig. 8.16 Treating adjectives with subject as verbs

8.2.7 Non-finite verbal modifiers with clausal complements

The early version of Stanford Dependencies (Marneffe & Manning 2008a) proposes
two relations for non-finite verbal modifiers partmod for participial and infmod for
infinitival forms exemplified in Example 106. Later in Marneffe et al. (2014) both
relations are merged into vmod.

(106) Tell the boy playing the piano that he is good.

Clauses such as “(that) he is good” following immediately after the qualifier clause
(“playing the piano” in the example 106) are problematic with respect to where they
shall be attached: to the main clause or to the modifying one. This problem is similar
to the prepositional phrase attachment problem.

In this case, of course, attachment would depend on whether the verb accepts a
clausal complement or not. In Example 106 the verb to play does not take clausal
complements and so the clause “that he is good” is complementing “tell the boy”.
The Stanford parser does not take into consideration such constraints and sometimes
provides an incorrect attachment.
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This type of error can be captured as the graph pattern in Figure 8.17a which is
transformed by the algorithm into the form represented in Figure 8.17b.

VB1

NN VB2 VB3

rel...
vmod ccomp

(a) Clausal complement attached to the
modifier clause

VB1

NN VB2 VB3

rel...
vmod

ccomp

(b) Clausal complement attached to the
main clause

Fig. 8.17 Treating clausal complements of the verbal modifiers

Syntactic structure is not enough to capture this error because it originates in the
semantic influences on the syntax. To grasp them an extra constraint check is the
possible lexico-semantic type of the verb. As only verbal and cognition process types
can take clausal complements as phenomena, the verb in the higher clause V B1 needs to
be capable of accepting clausal complement V B2 before performing the reattachment.
In other words, if V B1 is capable of accepting two complements (i.e. di-transitive)
then most likely V B2 is a complement, otherwise it is certainly not.

8.2.8 Demonstratives with a qualifier

Demonstratives (this, that, these, those) occur as both determiners and as pronouns.
In English, when demonstratives are used as determiners, they function as a Deictic
element of a nominal group, i.e. modifying the head of the nominal group. When used
as pronouns, demonstratives never form phrases but occur as single words filling a
clause element. Translated into dependency grammar, demonstratives may have as
parent either a noun (NN) or a verb (VB*).

Examples below show uses of demonstratives in both cases. The word (thing/things)
enclosed between round brackets should not be read as part of the sentence. These
examples show that having those generic nouns in the sentence is grammatically correct
but if they are missing the meaning does not change because they are implied by the
demonstrative pronouns.

(107) Bill moved those beyond the counter.

(108) Put that in our plan.

(109) Look at those (things) beyond the counter.



186 Creating the systemic functional constituency structure

(110) What is that (thing) next to the screen?

(111) I thought those (things) about him as well.

(112) He felt that (thing) as a part of him.

When a demonstrative is followed by a prepositional phrase the question arises
whether the prepositional phrase shall be attached to the verb and take a role in the
clause or it should be attached as post-modifier to the demonstrative. I note that
demonstratives cannot take by themselves a post-modifier in either case as determiner
or pronoun.

However there are cases when apparently the post-modifier (prepositional phrase)
pertains to the demonstrative as in Examples 109 and 110 and in cases such as Examples
111 and 112 when the post-modifier pertains to the clause.

In fact the only acceptable analysis for apparently a demonstrative with a Qualifier
(i.e. post-modifier) is as noun phrases with the Thing missing and the Deictic taking
the role of the Head. The implied missing head is the generic noun “thing(s)” or any
noun anaphorically binding the demonstrative.

The verb argument structure and syntactic constraints on the arguments described
in the Transitivity classification of process types enable precise distinctions of such
cases. However at this stage the algorithm does not employ this type of information.
Therefore as a rule of thumb, the prepositional phrase following the demonstrative
shall be attached to the verb in the case of non-projective1 di-transitive verbs which
are three role actions and directional processes.

In Examples 107 and 108, attaching the prepositional phrase to the demonstratives
(depicted in Figure 8.18a) is incorrect. It should be attached to the verb (as in Figure
8.18b) because the prepositional phrase can function as Destination or Location in
each case, i.e take semantic roles.

The algorithm detects cases of demonstratives that have attached a prepositional
phrase. If the parent verb is a three role action or a directional process then the
prepositional phrase is reattached to the verb.

Ideally, the algorithm should also change the POS of the demonstrative into pronoun
but unfortunately, the Penn tag-set only contains personal and possessive pronouns.
The demonstratives are always labelled as determiners so no POS change is made to the
dependency graph but it is properly represented when converted into the constituency
graph.

1Projective verbs express cognitive and verbal processes like saying, thinking or imagining and
often they verbs are di-transitive.



8.2 Correction of errors in dependency graphs 187

VB
(three role action, directional)

DT
(demonstrative)

IN NN

dobj

prep_xxx

(a) Prepositional phrase attached to the
demonstrative determiner which is the
head of a nominal group

VB
(three role action, directional)

DT IN NN

dobj prep_xxx

(b) Prepositional Phrase attached to the
verb with a demonstrative pronoun in
between

Fig. 8.18 Treating the attachment of prepositional phrases preceded by the demonstratives

8.2.9 Topicalised complements labelled as second subjects

The topicalisation (or thematic fronting) of complements is described in Trace Theory
as WH/NP/PP-movement. Examples 113–117 from Quirk et al. (1985: pp. 412-413)
present this phenomen. It is used in informal speech where it is quite common for an
element to be fronted with nuclear stress thus being informationally and thematically
stressed. Alternatively this phenomena is used as a rhetorical style to point at
parallelism between two units and occurs in adjacent clauses as in Examples 116–117.

(113) Joe(,) his name is.

(114) Relaxation(,) you call it.

(115) Any vitamins(,) I could be lacking?

(116) His face(,) I’m not found of but his character I despise.

(117) Rich(,) I may be (but that does not mean I’m happy).

These are difficult cases for the Stanford parser (tested with versions up to 3.5.1).
None of the above examples are parsed correctly. However, if the comma is present
between topicalised complement and the subject, then it produces parses that are
closest to the correct one where the topicalised complement is labelled as second subject
but still not a complement. So having a comma present helps.

The algorithm is looking for the cases of multiple subjects (represented in figure
8.19a) and gives priority to the one that is closest to the verb. The other one is
relabelled as a complement (Figure 8.19b). The rule is generalised in the algorithm for
multiple subjects even if so far only cases of two subjects have been observed.
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VB
(ditransitive)

NNNN(,) NN/PP/VB

nsubj
nsubj dobj/iobj/

prep/prepc

(a) Two consecutive nominal groups before
the verb labelled as subjects

VB
(ditransitive)

NNNN(,) NN/PP/VB

nsubj
dobj dobj/iobj/

prep/prepc

(b) Topicalised Direct Object – moved to
pre-subject position

Fig. 8.19 Treating consecutive nominal groups before the verb as topicalised Complement
and Subject

8.2.10 Misinterpreted clausal complement of the auxiliary
verb in interrogative clauses

Sometimes the auxiliary verb in the interrogative clauses (Examples 118 and 119) is
mistakenly used as a clause main verb. Instead of an aux relation from the main verb
to the auxiliary there is a clausal complement relation from the auxiliary to the main
verb.

(118) Do you walk alone?
(119) Has Jane fed the cat?

The algorithm searches for the pattern depicted in Figure 8.20a and transforms it
into the form Figure 8.20b.

VB1

NN VB2
nsubj

ccomp

(a) Mislabelled clausal complement

VB2

NNVB1
nsubj

aux

(b) Corrected clausal complement

Fig. 8.20 Treating clausal complements in interrogative clauses

8.3 Creation of systemic constituency graphs from
dependency graphs

This section describes how the systemic constituency structure is generated from the
dependency graph. This is treated in computer science as graph/tree rewriting. This
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is treated by Barendregt et al. (1987), Courcelle (1990), Plasmeijer et al. (1993) and
Grzegorz (1999), to name just a few.

The Parsimonious Vole parser prototype is not using any of the above mentioned
graph rewriting methods. It was important, at the time, to explore the exact set
of operations and mechanisms necessary to fulfil this parsing approach. So I have
implemented my own method of graph rewriting.

Because in the prototype implementation no pre-existing algorithm has been used,
future work could integrate the state of the art methods in graph rewriting. This
section explains the algorithms employed for rewriting dependency graphs into systemic
functional constituency graphs. The focus here is directed towards understanding what
is needed for transforming from dependency into systemic constituency graphs.

The currently implemented process consists of DG traversal and execution of
generative operations on a parallel structure, progressively building the CG. The choice
of the generative operation is based on a rule tables described in Section 8.3.3. The
DGs and CGs resemble each other but they are not isomorphic. The CG is created
in two phases are presented in Algorithm 2. The first phase, through a top-down
breadth-first traversal of a DG, generates, using a rule-set, an incomplete CG that omits
the heads and a few other elements for each CG unit. Also, no unit classes are specified,
except if that unit is a clause. The second phase, through a bottom-up DG traversal,
complements the first one ensuring creation of all CG constituents corresponding to
missing unit elements and assigns the unit class.

Algorithm 2: Creation of the constituency graph
input : dg (the dependency graph), rule table
output : cg (the constituency graph)

1 begin
2 create the partial cg by top-down traversal
3 complete the cg by bottom-up traversal
4 end

Before presenting the two stages of graph creation, I will first reiterate over the
difference in the dependency nature in the constituency and dependency graphs. Then
I will also talk about the tight coupling of the two graphs and the rule tables used in
traversal.
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8.3.1 Dependency nature and implication on head creation

Section 3.4 explained the different dependency relation nature in dependency graphs
and in systemic functional constituency graphs. The DG uses a parent-child dependency
while in Constituency Graphs there is a sibling dependency. This difference implies
that, when mapped into CG, a DG node stands for both a unit and that unit’s head.
In other words a DG node corresponds to two functions and unit classes at different
rank scales. For example, the root verb in DG corresponds to the clause node and the
lexical item which fills the Main Verb of the clause.

The two functions at different rank scales are the main reason why the creation
algorithm is separated into two phases with a traversal top-down and another bottom-up.
In the current approach, the top-down perspective considers the DG node functioning
in the upper rank. The result of the top-down phase is a constituency graph without
head (and sometimes a few other) elements/nodes.

The bottom-up perspective considers the DG nodes functioning in the lower rank
and aims at creating the remaining nodes, mainly heads. The bottom-up phase is
performed by traversing the constituency graph and not the dependency graph. As
the dependency nature in CG is among siblings, the traversal task seeks to spot and
locally resolve the missing elements. The local resolution is performed based on the
syntagmatic unit structure with the aid of the tight coupling between the dependency
and constituency graphs that is explained in the section below.

8.3.2 Tight coupling of dependency and constituency graphs

At the creation stage, the CG is tightly coupled with the original DG. This means that
each CG node has associated a corresponding DG node in the DG together with the
set of immediate child nodes. This coupling allows navigating easily from one graph to
the other via stored references. We say that a graph node is aware of its ascription in
another graph if it carries information to which nodes it is linked within the second
graph.

Through a stack of CG nodes, the DG nodes are made aware of which CG nodes
they correspond to and in which order they subsume them. An example of tight
coupling is depicted in Figure 8.21a. On the other hand, the CG nodes are also made
aware through a list of DG nodes, over which DG nodes they span, which is in Figure
8.21b. This way the positioning information is available bidirectionally about CG an
DG structures.
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smiled
(clause1,

mainVerb1)

girl
(clause1,
subject1,
thing1)

The
(clause1,
subject1,

determiner1)

nsubjdet

(a) Constituency aware DG nodes

clause1
(The, girl, smiled)

subject1
(The, girl)

determiner1
(The)

thing1
(girl)

mainVerb1
(smiled)

(b) Dependency aware CG nodes

Fig. 8.21 Graph nodes aware of their correspondents in another graph

Figure 8.21a depicts a dependency graph. Each node has a stack of ids correspond-
ing to constituents in the CG (Figure 8.21b). Conversely, Figure 8.21b, depicts a
constituency graph where the constituent nodes carry a set of tokens corresponding to
DG nodes. This way the nodes of DG in Figure 8.21a and the nodes of CG in 8.21b
are aware of each other’s correspondents.

This node awareness has two interesting properties worth exploring. First, the DG
nodes receive a vertical constituency strip. Each strip is a direct path from the root
to the bottom of the constituency graph where the word of the DG is found. These
strips are the very same ones explored in the parsing method explored by Day (2007).
Second, the CG nodes receive a horizontal span over DG nodes enabling exploration of
elements in linear order. These two properties could eventually be explored in future
work to inform or verify the correctness of the constituency graph. In the present work
the application of node awareness is limited to the complete construction of the CG.

8.3.3 Rule tables

Constituency Graphs are created through a top-down breadth-first walk of the de-
pendency graph. During the top-down breadth-first walk of the DG each visited
node triggers execution of a generative operation on the growing CG. To know what
operation to execute a rule table is used where the edge, head and tail nodes are
mapped to a generative operation and possibly a parameter (specifying the element
type if a constituent is to be created).

A simplified example of the rule table is presented in Table 8.4. The full table is
provided in Appendix E. It can be regarded as an attribute value matrix (implemented
as a Python dictionary) where the left column, the key, contains a unique dependency
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graph context serving as a rule trigger; while the left side column, the value, contains
the operation to be executed within the given context.

Key Value
Operation Parameter

1 nsubj new constituent Subject
2 csubj new constituent Subject & clause
3 prepc new constituent Complement, Adjunct & clause
4 VB-prep-NN new constituent Complement, Adjunct
5 NN-prep-NN new constituent Qualifier
6 VB-advmod-WR new constituent Complement
7 VB-advmod-RB new constituent Adjunct
8 mwe extend current
9 nn extend current

Table 8.4 Example of rule table mapping specific and generic dependency context to generative
operations

The current implementation uses three operation types: (a) creating a new con-
stituent under a given one (b) creating a new sibling to the given one (c) extending a
constituent with more dependency nodes.

The parameter is used only for operations (a) and (b) and specifies which element
the new constituent is filling as described in Sections 3.2 and 3.3. Most of the time
there is only one element provided but in the case of prepositional phrases and clauses
it is impossible to specify purely on syntactic grounds the exact functional role and
thus multiple options are provided (Adjunct or Complement) and then in later parsing
phases, when the verb semantic configurations are verified, these options are reduced
to one.

There are two types of keys in the rule table: the generic ones where the key consist
of the (non-extended) dependency relation and the specific ones surrounded by the POS
of head and tail edge nodes taking the form Tail–relation–Head. For example, nsubj
relation (row 1) always leads to creation of a Subject nominal constituent regardless
if it is headed by a noun, pronoun or adjective. Since all individual cases lead to the
same outcome it suffices to map the dependency relation to the creation of a new
constituent with Subject role ignoring the POS context of head and tail nodes. The
same holds for the prepc relation (row 3) as it always leads to creation of a subordinate
clause constituent with Complement or Adjunct roles. So the generic relations can be
viewed as equal to the form Any–relation–Any only that the nodes are omitted due to
redundancy.
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In the case of prep relations (rows 4 and 5) the story is different. Their interpretation
is highly dependent on the context given by the parent/tail and child/head nodes. If it
is connecting a verb and a noun then the constituent prepositional phrase takes the
role of either Complement or Adjunct in the clause. But if the prep relation is from a
noun to another noun, then it is a prepositional phrase with Qualifier function in the
nominal group.

Some dependency relations are not mapped to an operation of creating a new
constituent but rather extend the existing constituent with all nodes succeeding the
current one in the DG. This operation is used for two reasons: either (a) the constituent
truly consists of more than one word, for example the cases of multi-word expressions
(e.g. ice-cream) marked via an mwe relation (row 8) or (b) the relation (with or without
its POS context) is insufficiently informative for instantiating a constituent node and
is postponed for the second phase of the CG creation.

Note that the contextualised relations provided in the rule table represent “slight”
generalisations over what may be found in the dependency graphs. The generalisation
consists in using only the first two letters of the POS (which, in PENN tag set can be
up to four letters long). For example nouns generically are marked as NN but they
may be further specified as NNP, NNPS and NNS; or verbs (VB) may be marked as
VBD, VBG, VBN, VBP, and VBZ depending on their form.

Now that I covered the rule table structure I briefly present the algorithm for
making rule selections based on simple or contextualised keys.

Algorithm 3: Operation selection in the rule table based on the edge type
input : rule table, edge
output : rule

1 begin
2 generic key ← the simplified label on the edge
3 head POS ← the POS of the edge head node
4 tail POS ← the POS of the edge tail node
5 specific key ← concatenate (tail POS + generic key + head POS)
6 if specific key index in rule table:
7 rule ← value for specific key from rule table
8 elif generic key index in rule table:
9 rule ← value for generic key from rule table

10 else:
11 rule ← None
12 return rule
13 end
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Algorithm 3 is based on two dictionary lookups: one for specific key (contextualised
by the edge relation and its nodes) and another one for generic key based on the edge
relation alone. The rule table is conceived as a Python dictionary with string keys
and two-tuple containing the operation and the element type parameter. If the key is
found (either specific or generic) in the rule table then the operation and parameter are
returned, otherwise None is returned.

Next I explain the top-down traversal phase which is the cornerstone of the con-
stituency graph creation.

8.3.4 Creating partial constituency graph through top-down
traversal

The goal of this first phase is to bootstrap a partial constituency graph starting from
a given dependency graph and a rule table. The CG is created as a parallel graph
structure through the process of breadth-first traversal on DG edges as described in
Algorithm 4. The rewriting of the DG graph into a partial CG is performed as follows.
DG nodes, starting from the root, are traversed top-down breadth-first and for each
visited node apply the creation or extension operation as provided in the rule table.

Algorithm 4: Partial constituency graph creation by top-down traversal
input : dg (the dependency graph), rule table
output : cg (the constituency graph)

1 begin
2 create the cg with a root node
3 make the cg root node aware of the dg root node
4 for edge in list of dg edges in BFS order :
5 rule ← find in rule table the rule for current edge context
6 operation ← get operation from the rule table
7 element type ← get the parameter from the rule table
8 constituency stack ← get the constituency stack from the tail node of the

current dg edge
9 cg pointer ← get the CG node from the constituency stack

10 children ← all child nodes for the current dg edge
// constructing or extending the cg with a new node

11 execute the operation on cg given element type, cg pointer and children
12 return cg
13 end
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First the CG is instantiated and an empty root node is created. Also, the root
node is made aware of the root node in DG as described in Section 8.3.2. Then the
DG is traversed in breadth first order (BFS) starting from the root node and as each
DG edge is visited an operation is chosen based on the edge type and POS of the
connected nodes (Lines 7 - 10). Line 5 of the algorithm is responsible for looking up
and selecting the operation from the rule table as described in Algorithm 3. Then the
creative operation is executed with the established parameters: dependency successors
(children), a constituent node parenting the newly created one (cg pointer), and element
type which is chosen from the rule-table together with the operation.

In Python, functions are first class objects allowing objects to be called (executed)
if they are of type “callable”. This duality allows storing the functions directly in the
rule table and then, upon lookup, they are returned as objects but because they are
also callable these objects are executed with the expected set of parameters based on
their function aspect. The possible operations were already explained in Section 8.3.3:
extend current and new (sibling) constituent. Next I present the pseudo-code for each
of the operations. Note that these operations do not return anything because their
effect is on the input cg and dg.

Extend constituent. Algorithm 5 outlines the functionality for extending the cur-
rent cg pointer. It does two main things. It increases the span of an already existing
CG node over more DG nodes and makes them, concomitantly, aware of each other.

Algorithm 5: Extend a constituent with DG nodes
input : cg pointer, children, element type, edge, dg, cg

1 begin
// handling special relations prep and conj

2 if prep∨ conj in edge relation:
3 free nodes ← find in dg the free nodes referenced in the edge relation
4 create new node with marker function under the cg pointer with free

nodes as children
5 children ← children & free nodes

// making the children and cg pointer aware of each other
6 for node in children:
7 constituency stack ← the constituency stack of the node
8 push the cg pointer to the constituency stack
9 span ← constituent span of the cg pointer

10 extend the span with current node
11 end
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If, however, the edge relation is a conjunction or a preposition then the children
list is extended with the free nodes that stand for the preposition or conjunction in
place and potentially neighbouring punctuation marks (line 3).

This exceptional treatment is due to the fact that prep and conj relations are always
specialised by the preposition or conjunction in place. For details on this aspect of the
Stanford Dependency Grammar refer to Section 5.5.

He went on vacantion .

root

nsubj
prep_on

He went on vacation on a camel .

root

nsubj
prep_on

prep_on

det

Fig. 8.22 Examples of challenging free nodes

Figure 8.22 exemplifies easy (on the left) and more difficult (on the right) cases of
free node occurrence. The challenge in the second graph comes from the fact that there
may be two suitable free nodes for the edge went-prep_on-camel. Another challenge in
resolving free nodes is when the preposition is a multi-word construction.

Once all the free DG nodes are found, a new cg node is created with Marker element
type spanning over them (line 4). Then the free nodes are included in the list of children
and all together are made aware of the current cg pointer and vice versa.

Create new constituent. Algorithm 6 is an operation that inserts into CG a new
node/constituent (line 4). The new constituent is created as a child of a pointed CG
node with the element type extracted from the rule table together with the operation.
Once the cg node is created, it is extended with the children nodes as described in
Algorithm 5 above.

Note that only the functional element is assigned to the freshly created constituent.
Its class is added in the second phase of the creation algorithm. This is due to the
fact that a function can be filled by units of several classes. The bottom-up traversal
provides a holistic view on the constituency of each unit giving the possibility to assign
a class accordingly. For details see Chapter 3.

A variation of the create new is create sibling outlined in Algorithm 7. It sets the
newly created constituent as a sibling of the current one and not as a child. This makes
the new constituent a child of the current cg pointer’s parent.
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Algorithm 6: Creating new child constituent
input : cg pointer, children, element type, edge, dg, cg

1 begin
2 node ← new Constituent
3 type(node) ← element type
4 add to cg new edge (cg pointer, node)

// invoking Algorithm 5
5 extend cg pointer with children of edge
6 end

Algorithm 7: Creating new sibling constituent
input : cg pointer, children, element type, edge, dg, cg

1 begin
2 cg pointer ← get the parent of cg pointer

// invoking Algorithm 6
3 create new constituent with an updated cg pointer
4 end

8.3.5 Completing the constituency graph through bottom-up
traversal

Chapter 3 explained that each constituent must specify the unit class and the element
it is filling within its parent unit. The first phase of the algorithm achieves creating
most of the constituents and assigns each unit functional elements derived from the
dependency graph. The constituency graph misses, however, the unit classes and the
syntactic head nodes. The second phase complements the first one by fulfilling two
goals: (a) creation of constituents skipped in the first phase and (b) class assignment
to the constituent units.

He could have tried to unlock the door .

rootnsubj
aux

aux aux
xcomp

det
dobj

Fig. 8.23 The dependency graph before the first phase

Figure 8.24 depicts an example CG generated in the first phase with dotted lines
representing places of the missing constituents.

The missing constituents are the syntactic heads for all units. The clause, besides
the Main Verb element which is the syntactic head of the unit, also misses the Finite,
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Clause
(He could have tried to unlock the door.)

Subject
(He)

Complement
(to unlock the door.)

Complement
(the door.)

Deictic
(the)

Fig. 8.24 Constituency graph after the top-down traversal missing the head nodes

Auxiliary elements. Determining these functions strongly depends on the place within
a unit and syntagmatic order in which units occur.

The class membership of constituent units is decided based on three pieces of
information available within each constituent: (a) part of speech of the head depen-
dency node, (b) element type of the constituent, and (c) presence or absence of child
constituents and their element types. The corresponding constraints are listed in
Table 8.5. The first column shows the unit class (to be assigned), the second and
third columns enumerate part of speech and element types that constituents might
fill. The second and third column enumerations are exclusive disjunctive sets (SXOR)
because only one may be selected at a time, while the list in the last column is an open
disjunction (SOR) because any of child elements may be present. The last column is
an enumeration of what child constituents the current one might have. The n/a means
that information is unavailable.

Algorithm 8 traverses the CG (not the DG) bottom-up with post-order depth-first
order (line 2). This order means that first the child nodes are visited recursively before
the node is visited, as compared for example with pre-order depth-first order, when
first the node is visited and then its child nodes. During this traversal, the algorithm
assigns to every visited constituent node a unit class and creates the missing child
constituents.

As mentioned above in Section 8.3.2, CG and DG are tightly coupled which means
that each CG node spans over a set of DG nodes. In this stage, traversal over the CG
nodes is equal to traversing groups of DG nodes at each step. This creates a focused
mini-context suitable for resolving the unit class and the missing elements out of the
DG chunks.

When assigning unit class, the following information is considered: (a) part of
speech of the head DG node that triggered node creation in the first phase (head POS),
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Class POS of the Head DG
Node (XOR)

Element Type
(XOR)

Child Constituents (OR)

Clause VB* Subject,
Complement,
Qualifier, n/a

Subject, Complement,
Adjunct, n/a

Preposi-
tional
Group

CD, NN*, PR*,WP*,
DT, WD*

Complement,
Qualifier, Adjunct

Marker, n/a

Nominal
Group

CD, NN*, PR*,WP*,
DT, WD*, JJ, JJS

Subject,
Complement

Deictic, Numeral, Epithet,
Classifier, Qualifier, n/a

Adjectival
Group

JJ* Complement,
Epithet, Classifier

Modifier, n/a

Adverbial
Group

RB*, WRB Adjunct Modifier, n/a

Table 8.5 Constraints for unit class assignment

Algorithm 8: Creating the head units and assigning classes
input : cg, dg

1 begin
2 for node in list of cg nodes in DFS post-order :
3 head POS ← get POS of the corresponding dg node
4 element type ← get assigned function from node
5 children ← get node children

// assigning classes
6 class ← find class based on head POS, element type and children
7 assign node the class

// creating the rest of the units
8 if node is not a leaf :
9 create the remaining elements under the node

10 end

(b) the assigned element type (element type) and (c) element type of each direct child
(children of node). Lines 6 to 7 assign classes according to conditions provided in Table
8.5.

The CG nodes corresponding to non-modal verb DG nodes are assigned clause class.
This rule corresponds to the one-main-verb-per-clause principle discussed in Section
4.1.1. This approach however does not take into consideration elliptic clauses and they
need additional resolution that is considered for future work and can be overcome
by an ellipsis resolution mechanism, similar to the one for null elements described in
Chapter 6.



200 Creating the systemic functional constituency structure

The second part of the algorithm creates head nodes for every non-leaf constituent
and in case the node is a clause then it also creates the clause elements: Finite,
Auxiliary, Main Verb, Negator and Extension.

After the second stage, all the DG nodes must be covered by CG nodes. Moreover
the CG nodes build up to a constituency graph that at this stage is always a tree. If
the class and element type information is available, the created nodes are then ready
to be enriched with choices from systemic networks as will be described in the next
chapter.

8.4 Summary
In this chapter a set of transformations of DGs from the Stanford parser has been
described in detail, followed by explanation of algorithms rewriting DGs into CGs. The
DG transformations are there to correct known errors in Stanford parser version 3.5.1
and to adjust treatment of certain linguistic features such as copulas, conjunction and
others. The final section of the chapter described how the DG is rewritten into a CG
using create and extend operations upon graph traversal and tight coupling between
the CG and DG nodes.

There are state of the art algorithms for graph rewriting with proven efficiency.
The current work intends to be neither generic nor an efficient rewriting algorithm but
rather to explore the process by which a DG can be rewritten into a SFL CG. In the
future, to increase the speed and performance, the current algorithm could be rewritten
using for example a graph programming language or a graph rewriting formalism.

Now that it has been described how to construct the systemic functional constituency
graph, representing the syntactic backbone for parsing, we turn our attention to fleshing
out this backbone with systemic features selected from system networks. The feature
enrichment is performed by employing graph matching and pattern based operations
as explained in Sections 7.4 and 7.5. How this process works is explained in the next
chapter.



Chapter 9

Enrichment of the constituency
graph with systemic features

The previous chapter described how to create the systemic functional constituency
structure which is the syntagmatic organisation aimed at in this work. This chapter
presents the mechanisms by which the paradigmatic account is provided through
selection of systemic features at the level of each constituent. I present how the
constituency graph is enriched with features from two main system networks MOOD,
introduced in Section 4.2.1, and TRANSITIVITY, introduced in Section 4.2.2.

In the parsing process pipeline depicted in Figure 1.8 there is a phase called
increasingly semantic graph enrichment. The present chapter covers this phase entirely
starting from Mood enrichment, to Null Element creation and finally Transitivity
enrichment.

The main method of enrichment is by execution of update graph patterns (presented
in Section 7.5) on the constituency graph. The MOOD graph patterns have been
manually designed across various levels of delicacy. The patterns usually cover from one
to four systemic selections from sibling or chained systems. Then the graph patterns
are employed in the MOOD enrichment process provided in Section 9.2.

In SFL, Transitivity analysis roughly corresponds to what is known in mainstream
computational linguistics as semantic analysis of text or semantic role labelling (SRL),
a well established task in mainstream computational linguistics (Carreras & Màrquez
2005; Pradhan et al. 2007). In this task the clause is assigned a semantic frame in
which the predicate functions as the process and the participant constituents take
frame dependent roles (or functions). The nodes that do not receive any participant
role are adjuncts which act as circumstances and are currently outside the scope of
this thesis.
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Sometimes not all constituents are realised in the clause. Usually these constituents
play semantic roles in the process configuration realised by the clause. This happens for
one of two reasons: the participant is implicit and resolvable from discourse structure
or it is implicit and resolvable by a lookup outside the clause borders within the same
sentence. The resolution from the discourse structure is outside the scope of the current
work; the second resolution type, however, is implemented as it is based only on the
sentence structure. In this work the account of empty constituents is a prerequisite for
performing Transitivity analysis and is implemented as described in Government and
Binding Theory (GBT) (Haegeman 1991b) introduced in Chapter 6.

Because the Transitivity analysis goes beyond the syntactic structure it needs to
rely on additional external semantic resources. One such resource is the Process Type
Database (PTDB) created by Neale (2002) introduced in Section 4.2.3. This is a table
which lists possible configurations of semantic roles for each verb sense for over five
thousand common verbs in English. This resource is integrated into the current parser
pipeline to automatically assign semantic configurations and participant roles.

The majority of implementations for the SRL task use probabilistic models trained
on an annotated corpus whose outcome is a single most probable assignment of semantic
roles; the selection is based on the maximum likelihood. In the current work I mostly
employ a lexical data base containing sets of configurations for each verb sense. These
configurations are interpreted as what may be the case, i.e. what are the possible
semantic roles, and the result is a small set of possible semantic roles rather than the
best single guess. In order to reduce the number of possible assignments taking the
analysis close to the goal of a single “correct” configuration, I use the preparatory step
of identifying covert constituents (i.e. Null Elements).

In the following sections I explain the practical steps of enriching the CG with
TRANSITIVITY features starting from how the PTDB has been normalised and made
machine readable, then how the graph patterns have been generated from the PTDB
and finally how the patterns are matched onto the structural backbone enriching it
with systemic features.

9.1 Creation of MOOD graph patterns
In this section I describe a set of graph patterns that have been manually created and
included into the parsing process of the MOOD system. All of the MOOD features can
be recovered from the constituency and dependency elements. Therefore the graph
patterns provided below rely on constituency information, i.e. class and element and
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on dependency information such as POS, lemma, incoming and outgoing relation for
the anchor node, order, etc.

This section describes how the patterns look and how they were created. An
extended representation of all the patterns is provided in Appendix G.

The first two patterns depicted in Figure 9.1 are used to determine POLARITY
choices. The clause polarity in this work is considered to depend solely on the presence
of a negation particle (this limitation is addressed in Section 4.2.1), which, in DG is
represented by the neg edge label and in CG is signalled by the presence of a negator
element. The pattern in Figure 9.1a specifies that the root node is a clause and has a
negator constituent. If this pattern is identified then the negative POLARITY feature
selection is added to the clause node. Conversely, if the pattern from Figure 9.1b,
where the negator element is marked to be missing, is successfully matched then the
clause node is updated with positive POLARITY.

class:clause
op:update

arg:{POLARITY:negative}

element:negator

(a) Negative POLARITY

class:clause
op:update

arg:{POLARITY:positive}

element:negator

(b) Positive POLARITY

Fig. 9.1 POLARITY detection graph patterns

A similar case holds for VOICE. The graph pattern in Figure 9.2 corresponds to the
selection of passive voice. In DG it is captured by any of the four relations outgoing from
a verb to another node. The dependency relations are: auxpass, nsubjpass, csubjpass,
agent introducing either a passive auxiliary verb, a nominal subject, clausal subject or
the agent in complement position. If the pattern is matched in a dependency graph
then it reflects passive voice, otherwise the voice selected is active. As the CG nodes
have full awareness (described in Section 8.3.2) of DG nodes and edges the patterns
can be written using the incoming relation (in-rel) special feature that represents all
the incoming edges to the DG node corresponding to the current constituent.

The story is very similar for the rest of the patterns. There is a mixture of positive
and negated nodes (in dashed boxes) described by constituency or (still) dependency
special features. The reason for using dependency graph information is that they
already cover rich syntactic variations that can be exploited. As we move towards
patterns with more semantic information the DG features are no longer used.
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class:clause
op:update

arg:{VOICE:passive}

in-rel:OR[auxpass, nsubjpass,
csubjpass, agent]

(a) Passive voice

class:clause
op:update

arg:{VOICE:active}

in-rel:OR[auxpass, nsubjpass,
csubjpass, agent]

(b) Active voice

Fig. 9.2 Voice detection graph patterns

pos:VBD, class:clause, op:update
arg:{TIME:past,

PROGRESSIVITY:non-progressive,
PERFECTIVITY:non-perfect}

pos:OR[MD,VB*]

(a) Simple past tense pattern

pos:VBD, class:clause, op:update
arg:{TIME:present,

PROGRESSIVITY:non-progressive,
PERFECTIVITY:non-perfect}

pos:OR[MD,VB*]

(b) Simple present tense pattern
pos:VBD, class:clause, op:update

arg:{TIME:future,
PROGRESSIVITY:non-progressive,

PERFECTIVITY:non-perfect}

lemma:will pos:OR[MD,VB*]

(c) Simple future tense pattern

Fig. 9.3 Simple past, present and future tense patterns

Figure 9.3 depicts a set of patterns for enriching the simple present, past and
future tenses. They are presented as an additional example of graph patterns. They
are mutually exclusive by design, but in principle no one can prevent a mistake in
grammar so that more than one graph pattern yields a positive outcome. This is, in
fact, one of the limitations of the current parsing method. So, for example, if the
negated described by pos:OR[MD,VB*] is omitted from the pattern, then it will yield
matches with situations when there is an auxiliary modal verb involved, which is not
correct because the intention is to capture clauses with a single verb.
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9.2 Enrichment with MOOD features
In this stage the CG nodes are assigned system network features from graph patterns
and a lexical-semantic dictionary. This is achieved by visiting each CG node in a
bottom-up order and executing the enrichment functions.

The enrichment functions are provided via two rule tables. The first rule table
(activation table) offers a pairing between element class and/or element (also called
here the trigger) and an ordered set of system names. The second rule table is
an association between a system name, an enrichment function (either matching or
dictionary lookup) and a parameter that is either a set of graph patterns or a dictionary.
Both tables have been manually created following the MOOD system network along
with a few simple systems for nominal phrases created for illustration. The graph
patterns and dictionaries have also been manually complied following either traditional
grammar sources, mainly Quirk et al. (1985), or SFL sources, mainly IFG4 (Halliday
& Matthiessen 2013b).

The systems are provided in Table 9.1 in the right column, as ordered associations
with the node class or function, in the left column. The list of systems from the MOOD
network is partial because, as we will see next, the set of associated patterns usually
cover several systems at once, therefore the least delicate one serves as a marker for a
portion of the system network.

Key System activation order
clause POLARITY, FINITENESS, MOOD TYPE, VOICE, TENSE,

MODALITY TYPE
nominal PERSON, ANIMACY, GENDER, NUMBER
deictic, pre-deictic DETERMINATION
thing, possessor PERSON, ANIMACY, GENDER, NUMBER

Table 9.1 System activation table by unit class or element type

Table 9.2 associates systems with the enrichment functions and a parameter.
Currently there are two enrichment functions: one based on matching graph patterns
(as described in Section 7.5) and the other one based on a dictionary of lexical items
paired to a set of features.

Algorithm 9 presents the pseudo-code for enriching CG nodes with systemic choices
using enrichment functions based on the two rule tables presented above. There is one
loop nested in another. The outer one is a bottom-up iteration over the CG nodes
in depth first (DFS) post-order. The inner loop iterates over the provided systems
for the focus node. Then a lookup in Table 9.2 returns the enrichment function to
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System Name Function Parameter
POLARITY match all patterns polarity set
VOICE match all patterns voice set
FINITENESS match all patterns finiteness set
MOOD TYPE match all patterns mood set
TENSE match all patterns tense set
MODALITY TYPE match all patterns modality set
DETERMINATION dictionary lookup determination dictionary
PERSON dictionary lookup person dictionary
ANIMACY dictionary lookup animacy dictionary
GENDER dictionary lookup gender dictionary
NUMBER match all patterns plurality set

Table 9.2 Association of systemic networks to functions

Algorithm 9: Enriching CG with systemic features
input : cg

1 begin
2 for node in list of cg nodes in DFS postorder :
3 for network in activated networks for the node class or element:
4 selector function ← get associated function and parameter
5 run selector function knowing node, cg and parameter
6 end

be executed for that system network. This technique of using a mapping table from
system networks to functions is similar to the one employed in the CG creation phase
(Algorithm 4) presented in the previous chapter.

Algorithm 10: Match-all-patterns enrichment function
input : node, cg, pattern set

1 begin
2 for pattern in pattern set:
3 execute pattern based node update in cg given node context
4 end

Algorithm 10 takes a focus node, the cg it belongs to, and a pattern set and executes
for each pattern the pattern based node update operation as described in Section 7.5.
If multiple patterns match then multiple updates are performed consecutively. The
second enrichment function is based on associations between lexical items and feature
selections described below.
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Algorithm 11: Dictionary-lookup enrichment function
input : node, cg, dictionary

1 begin
2 lexical item ← get lexical item from the node
3 find lexical item in dictionary
4 systemic choices ← get the associated features + implied preselected features
5 add systemic choices to the node
6 end

Fig. 9.4 The NON-SPECIFIC DETERMINATION system network

The dictionary lookup function outlined in Algorithm 11 checks whether the word(s)
of the CG node are in a dictionary. If the word is found then the function assigns the
graph node with the associated features from the table. In addition, using the naive
backwards induction method described in Algorithm 1, all the preselected features
from a system network are determined and assigned to the graph node. An example of
the dictionary is presented in the Table 9.3 and the system network of NON-SPECIFIC
determination is shown in Figure 9.4.

Lexical item Feature
a partial-non-selective-singular
all positive-plural
either partial-singular
that non-plural

Table 9.3 Dictionary example for the NON-SPECIFIC DETERMINATION system network

This section completed the explanation of how the MOOD features are assigned
to the constituency graph. In the remainder of this chapter is addressed the task of
assigning TRANSITIVITY process types and participant roles to the constituent units
introduced in Costetchi (2013).
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9.3 Creation of empty elements
In the current work, when participants are missing but are syntactically recoverable in
the sentence then they are inferred from the structure and reference nodes are created
for the missing elements. This phenomena is described in GB theory specifically as the
Control and Binding of empty elements (Haegeman 1991b) introduced in Section 6.2.
The reference constituents are important for increasing the completeness and accuracy
of semantic analysis by making the participants and their corresponding labels explicit.

This stage is particularly important for semantic role labelling because usually the
missing elements are participant roles (theta roles) shaping the semantic configuration.
The most frequent are the cases of control where the understood subject of a clause is
in the parent clause as in Examples 120–122 where Subj is a generic subject placeholder
introduced in Chapter 6 as PRO, pro, t-trace and wh-trace.

(120) Poiroti is considering whether [Subji to abandon the investigation].

(121) Susani promised us [Subji to help].

(122) They told youi [Subji to support the effort].

There are also movement cases when a clause constituent receives no thematic
role in a higher clause but one in a lower clause. The other case is of the non-overt
constituents that are subjects in relative clauses and refer to the head of the nominal
group. This part of the algorithm is set up to detect cases of null elements as described
in Section 6.3, which relates GBT to Dependency Grammar and creates placeholder
constituents for them which are in the next step enriched with semantic roles. Currently
the NP traces and PRO subjects are created with a set of graph patterns, while the
Wh traces are created with an algorithm.

9.3.1 PRO and NP-trace Subjects

The xcomp relation in DG can be encoded as a CG pattern graph (Figure 9.5) targeting
the constituents that are non-finite clauses functioning as complement that have
no subject constituent of their own and no “if” and “for” markers (according to
generalisation 6.2.4). They receive a PRO subject constituent (governed or not) by the
parent clause subject.

The generalisation 6.3.2 reflects criteria for selecting the controller of PRO based
on its proximity in the higher clause. The schematic representation of the pattern for
obligatory and subject object control (treated in Section 6.3.2) is depicted in Figures
9.6 and 9.7 respectively. In the case of Figure 9.7 the prepositional complements do
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class:clause

element:complement,
class:clause,

finiteness:non-finite

element:marker,
words:[if,for]

element:subject,
operation:insert

Fig. 9.5 CG pattern for detecting PRO subjects

not affect subject control treatment in any way. The reason for that is because the
graph pattern specifies only the nominal complements, which is complementary to
object control pattern in Figure 9.6.

class:clause

class:nominal,
element:subject

class:nominal,
element:complement,

id:compl1

class:clause,
element:complement,
finiteness:non-finite

element:marker,
words:[if,for]

element:subject,
operation:insert,
arg:{id:compl1}

Fig. 9.6 CG pattern for obligatory object control in complement clauses

In dependency grammar the adjunct clauses are also introduced via xcomp and
prepc relations, so syntactically there is no distinction between the two and patterns
from Figures 9.6 and 9.7 are applicable.

Before discussing each approach I would like to state that when the empty con-
stituent is being created two important details are required: (a) the antecedent
constituent it is bound to and (b) the type of relationship to its antecedent constituent
or, if none is available, the type of empty element: t-trace or PRO. Now identifying
the antecedent is quite easy and can be provided at the time of CG creation, but since
the empty element type may not always be available then it may have to be marked as
partially defined.
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class:clause

class:nominal,
element:subject,

id:subj1

class:nominal,
element:complement

class:clause,
element:complement,
finiteness:non-finite

element:marker,
words:[if,for]

element:subject,
operation:insert,
arg:{id:subj1}

Fig. 9.7 CG pattern for obligatory subject control in complement clauses

The first solution is to create the empty subject constituents based only on syntactic
criteria, ignoring element type (either PRO or t-trace) and hence postponing the
decision to the semantic enrichment phase (addressed in this chapter). The advantage
of doing this is a clear separation of syntactic and semantic analysis. The empty subject
constituents are created in the places where they should be and so this leaves aside
the semantic concern of how the thematic roles are distributed. The disadvantage is
leaving the created constituents incomplete or under-defined. Moreover the thematic
role distribution must be done within the clause limits but because of raising, this
process must be broadened to a larger scope beyond clause boundaries. This of course
is an unwise approach as it might lead to unbounded dependencies and so unbounded
complexity that needs to be addressed.

The second solution is to decide the element type before Transitivity analysis
and remove the burden of complex patterns that go beyond clause borders. Also, all
syntactic decisions would be made before semantic analysis and the empty constituents
would be created fully defined with the binder and their type. But this means delegating
semantically related decision to syntactic level (in a way peeking ahead in the process
pipeline).

In the current work, however, the semantic roles are addressed within the clause
borders following the principle of one-main-verb-per-clause and thus avoiding the above
mentioned risk of unbounded complexity. Also, the transitivity analysis is done based
on pattern matching. This means a tremendous rise in complexity as the scope of
a graph pattern is extended to two or more clauses. Instead, a desirable solution is
iteration over all the clauses in the CG (a sentence) and matching semantic patterns
within the clause boundaries one at a time.
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The solution adopted here is a mix of the two described above and addresses the
issues of: (a) increasing the complexity of patterns for transitivity analysis, (b) leaving
undecided which constituents accept thematic role in the clause and which do not.

The process to distinguish the empty constituent type starts by (a) identifying the
antecedent and the empty element (through matching the subject control pattern in
Figure 9.7), (b) identifying the main verbs of higher and lower clauses and correspond-
ingly the set of possible configurations for each clause (by inquiry to the process type
database (PTDB) described in the transitivity analysis Section 9.6).

If conditions from Generalisation 6.3.3 (from Section 6.3.2) are met then the empty
constituent is a subject controlled t-trace. Now we need a set of simple rules to mark
which constituents receive a thematic role. These rules are presented in Generalisation
9.3.1 below.

Generalisation 9.3.1. Constituents receiving thematic roles are marked with a
“thematic-role” label, those that do not receive a thematic role are marked with “non-
thematic-role” and those that might receive thematic role with “unknown-thematic-role”.
So in each clause:

• the subject constituent is marked with thematic-role label unless (a) it is an
expletive or (b) it is the antecedent of a t-trace; then marked non-thematic-role

• a complement constituent that is an nominal group (NP) or an embedded
complement clause is marked with thematic-role label.

• a complement that is a prepositional group (PP) is marked with unknown-
thematic-role.

• a complement that is a prepositional clause is marked with unknown-thematic-
role label unless they are introduced via “that” and “whether” markers then it is
marked with thematic-role label.

• the adjunct constituents are marked with non-thematic-role.

According to Generalisation 6.2.9 PRO is optionally controlled in subject non-finite
clauses. Since it is not possible to bind PRO solely on syntactic grounds, Generalisation
6.2.9 proposed arbitrary interpretation, i.e. no binding to an antecedent; and this is
the solution adopted in this work for PRO elements.

The pattern for subject control in a subject clause is represented in Figure 9.8. This
of course is an oversimplification and more rigorous binding rules would need to be
developed in future work to cover binding scenarios exemplified in Examples 67–70.



212 Enrichment of the constituency graph with systemic features

class:clause

class:clause,
element:subject,

finiteness:non-finite

element:subject,
operation:insert,
arg:{words:one}

Fig. 9.8 CG pattern for arbitrary control in subject clauses

9.3.2 Wh-traces

Creating constituents for Wh-traces involved a slightly larger number of scenarios and
for pragmatic reasons I implemented the following algorithm rather than create the set
of corresponding graph patterns. Nevertheless in future work this should be expressed
as graph patterns in order to be consistent with the general approach of the thesis.
Algorithm 12 shows how it is currently done.

Algorithm 12: Creating the Wh-traces
input : cg

1 begin
2 if more than one clause in cg:
3 for element in list of Wh-elements in cg:
4 identify the Wh-groups containing the element
5 identify the syntactic function of the Wh-element within the group
6 identify the function of Wh-group in the clause
7 for group in cg: low to high
8 if Wh-group is not Subject AND
9 Wh-group is not in lowest embedded clause:

10 if Wh-group is Adjunct function:
11 create Adjunct Wh-trace using dg and cg
12 else:
13 create Theta Wh-trace using dg and cg
14 end

The first line of the algorithm checks if there is more than one clause in the CG,
otherwise it cannot continue. Then all the Wh-elements, their functions within the
group and the clause are identified. Then, from the lower to higher, clauses are iterated
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and the constituent corresponding to Wh-trace in the lower clause is created and
linked to the trace constituent in the parent clause. The creation of the Adjunct or
Theta Wh-traces involves different procedures. The corresponding algorithms have
been omitted in this section but are included in Appendix H.

After the null elements are created the constituency graph is ready for the semantic
enrichment stage, and semantic configurations are assigned to each clause. The next
sections introduce first how the PTDB has been normalised and how the graph patterns
are created from it; they then proceed with the semantic enrichment algorithm.

9.4 Cleaning up the PTDB
The original version of the PTDB available on Neale’s personal page1 is not usable
for computational purposes as such. It contains records applying a couple of different
notations and sometimes informal comments for human understanding, which from a
machine standpoint are noise and cannot be processed. In this section I explain how
the original PTDB was transformed into a machine readable form in order to be used
as a lexical database.

The internal structure of the PTDB is detailed in Neale’s PhD thesis (Neale 2002:
193–231). Here I focus on three columns which are of interest for the parsing process:
the verb form (1st), the Cardiff grammar process type (6th) and the participant role
configuration (8th). Note that column numbers correspond to the original PTDB
structure. After the transformation the PTDB column descriptions are as described in
Table 9.4. The field names in italics are the ones of interest and have been modified.

Next I describe the transformed PTDB and how it is interpreted. For a start, the
verb form column contains either the base form of the verb (e.g. draw, take), base form
plus a preposition (e.g. draw into, draw away, take apart, take away from) or the base
form plus a phraseological expression (e.g draw to an end, take on board, take the view
that, take a shower). The prepositions are either the verbal particles or the preposition
introducing the prepositional phrase complement. Prepositions often influence the
process type and the participant configuration. So they are important cues to consider
during semantic role assignment. The verb forms that have the same process type and
configuration but different prepositions are often grouped together delimited by a slash
“/” (e.g. draw into/around, take off/on) or if optional (i.e. coincide with the meaning
of the verb base form without any preposition), they are placed in round brackets “()”
(e.g. flow (into/out/down) ).

1see http://www.itri.brighton.ac.uk/~Amy.Neale/

http://www.itri.brighton.ac.uk/~Amy.Neale/
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Column Original Modified
1/A Form Form
2/B Occurrences of form Occurrences of form
3/C COB class (& figure where

possible)
COB class (& figure where possible)

4/D meaning description meaning description
5/E Occurrences in 5 million

words
Occurrences in 5 million words

6/F Cardiff Grammar feature Cardiff Grammar process type
(re-indexed/renamed)

7/G Levin Feature Cardiff participant feature
8/H Participant Role

Configuration
Cardiff participant feature (extra)

9/I Notes Levin feature
10/J Participant Role Configuration
11/K Notes

Table 9.4 The table structure of PTDB before and after the transformation

The process type column registers one feature from the PROCESS-TYPE systemic
network depicted in Figure 4.4, which was introduced in Section 4.2.2. The participant
configuration column contains a sequence of participant type abbreviations joined by
a plus sign “+” (e.g. Ag + Af, Em + Ph, Ag-Cog + Ph). The order of participants
corresponds to the active voice in aeclarative mood, also called the canonical form
of a configuration described in Fawcett (forthcoming). Originally the configurations
contained the “Pro” abbreviation signifying the place of the main verb/process. As
all configurations are in canonical form, the Pro was redundant occurring always in
the second position and so has been removed. The first participant, in canonical form,
corresponds to the Subject, the second to the first complement and the third to the
second complement. Some participants are optional for the meaning and are marked
with round brackets “()”, e.g. Ag + Af-Ca (+ Des), meaning that the participant may
or may not be realised. Sometimes, for directional or locational process types, the
second or third participants may function as Adjuncts, which currently complicates
the matching process.

Not all the records in the original resource fulfil the description above and so needed
corrections. For example when Neale had doubts during the making of PTDB, she
marked uncertainties with a question mark “?”. In addition, the “,” (comma) and
“&” (and) signs are used inconsistently with various meaning in all columns. Also,
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comments such as “not in Cob” (i.e. not in Cobuild) were encountered in several
columns.

Some records contain only prepositions listed in the verb form column, which
actually represents omissions of the main verb that is to be found in the immediately
preceding records(s); those have been fixed by pre-pending the verb form to the
preposition.

Among the identified verb meanings in PTDB, there are also some that do not
contain configurations. These records missing a process type and configuration have
been removed.

The process type feature column contained originally a second feature which has
been removed; it represented a compressed version of the participant configuration and
it was redundant as the full configuration is registered in the next column.

In the PTDB Neale uses slightly different process type names than the ones used in
this work. The process type features have been thus re-indexed and adapted to match
exactly the feature labels in the PROCESS-TYPE systemic network (e.g. “one role
action” became “one-role-action”, “emotion plus xxx” became “emotive”, “cognition
xxx” became “two-role-cognition”). Appendix F provides the mapping across the
process type versions.

The configuration column is one of the most important in the PTDB. Checking its
consistency with respect to Fawcett’s Transitivity system revealed the need for some
corrections. For example “Af + Af”, “Af-Ca + Pos + Ag”, “Af-Cog + Ph + Ag” are
grammatically impossible configurations and were manually corrected to the closest
likely configuration “Ag + Af”, “Ag + Af-Ca + Pos”, “Ag + Af-Cog + Ph”.

Other records, judged by the process type, were incomplete. For example instances
of two role actions registered only one of the roles, e.g. Af or Ca omitting the Ag
participant. These records have also been manually corrected by prepending the Ag,
Ag-Af or Cog roles as appropriate.

The “Dir” participant is interpreted as direction but is not registered/defined in
the Cardiff Grammar. Nevertheless there is a “Des” participant which I believe is
the closest match. Therefore all “Dir” occurrences have been changed to “Des”. One
may argue that the two have different meanings, however grammatically they seem to
behave the same (at least in the accounted configurations).

By contrast some process types have been changed from action into either locational
or directional because they contained either “Loc” (location), “Des” (destination) or
“So” (source) participants which are not found in action processes unless they function
as adjuncts, which are out of the context of the current description.
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A note worth making here is that locational process types, in particular movement
sub-process types, are more difficult to assign roles correctly. Their participants are
locations, directions, destinations etc. and these participants can equally serve as
adjuncts of various spatial types. This aspect has not been directly addressed in present
work and is reflected in the evaluation results (presented in Chapter 10) as a lower
accuracy for these process types as compared to other ones.

The Cardiff features column indicates the process type selected in the TRANSITIV-
ITY system corresponding to one of the top levels depicted in Figure 4.4 provided in
Chapter 4. Next section provides a description of how the graph patterns are generated
from the PTDB.

9.5 Generation of the TRANSITIVITY graph pat-
terns

The configuration pattern graphs are used for CG enrichment executed through graph
matching operation as described in Section 7.4. In the previous section we saw how
the PTDB has been cleaned up and normalised to support automatic generation
of the Configuration Graph Patterns (CGP), which afterwards are used to enrich
constituency graphs with transitivity features. These graph patterns represent a
constrained syntactic structure that carries semantic features that are applied if the
pattern is identified.

CGPs are generated from the process type and participant configuration columns
of the PTDB. Figure 9.9 depicts the prototypical template for generating a three role
CGP for canonical participant order that is active VOICE and declarative MOOD.
This pattern matches declarative clause with a subject and two complements and in
case of success updates the constituents with process type and participant roles. When
the configuration has only one or two participants the graph pattern indicates one or
two negative complement nodes as depicted in Figures 9.10 and 9.11. In this section I
do not aim at providing an exhaustive account of all the pattern forms but explain the
principles by which they are automatically generated.

Besides the canonical CGP a set of variations are generated for each configuration
corresponding to yes-no and Wh-Subj/Wh-obj/Wh-adj interrogative forms, imperative
form and to passive voice form. When each of the variants are supported by the
process type and participant configuration, the following CGP are generated: (1)
the declarative active (2) the passive (3) the imperative and (4) Wh-interrogative
(Wh-Subj/Wh-obj/Wh-adj especially important for locational and directions processes).
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class:clause,
MOOD:declarative, VOICE:active

operation:update,
arg1:{process:process-type}

element:subject,
operation:update,

arg1:{participant:role1}

element:complement,
operation:update,

arg1:{participant:role2}

element:complement,
operation:update,

arg1:{participant:role3}

Fig. 9.9 Declarative MOOD and active VOICE graph pattern with three participant roles

class:clause,
MOOD:declarative, VOICE:active

operation:update,
arg1:{process:process-type}

element:subject,
operation:update,

arg1:{participant:role1}

element:complement,
operation:update,

arg1:{participant:role2}
element:complement

Fig. 9.10 Declarative MOOD and active VOICE graph pattern with two participant roles

class:clause,
MOOD:declarative, VOICE:active

operation:update,
arg1:{process:process-type}

element:subject,
operation:update,

arg1:{participant:role1}
element:complement element:complement

Fig. 9.11 Declarative MOOD and active VOICE graph pattern with one participant role

If the configuration accepts passive voice, i.e. the first participant in the configura-
tion is not the expletive “there” or the pleonastic “it” and the last role is not the Agent
role, then both active and passive voice CPG are generated. Otherwise the passive
form is not possible.

The imperative form CGP is generated if the first role of the configuration implies
an active animate entity. Thus the nominal features of the subject must already
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be provided. Roles that accept imperative form are: Agent, Emoter, Cognizant,
Perceiver and their compositional derivations, e.g. Agent-Carrier, Agent-Cognizant,
Affected-Emoter etc. Clausal subjects are excluded.

The passive differs from the active voice pattern by switching the places of the first
two roles resulting in the second role matched to the subject function and the first role
to the first complement. In the case of imperative, the first role as well as the subject
constituent are simply omitted.

Algorithm 13 outlines how the CPGs are generated from the PTDB. The CPGs
are represented as Python structures and are stored in a Python module. This way
the graph patterns are accessible as native structures making it easy to instantiate and
execute the graph patterns. The process types are also grouped by the process type
and number of participants which reduces the number of patterns to match per clause.

Algorithm 13: Generating the CPGs from the PTDB
input : PTDB

1 begin
2 generate unique set of process type + participant roles
3 generate unique set of process types
4 for process type in possible process type:
5 for configuration in configuration set:
6 generate declarative active pattern graph
7 if no expletive in configuration:
8 if configuration accepts passive:
9 generate declarative passive pattern graph

10 if configuration accepts imperative:
11 generate imperative pattern graph
12 if locational process:
13 generate expletive there pattern graph
14 if configuration participants may function as Adjuncts:

/* the Directional processes varying optional
Source, Path and Destination */

15 generate variate role indicative active pattern graphs
16 generate variate role indicative passive pattern graphs
17 generate variate role imperative pattern graphs
18 generate variate role Wh-interrogative pattern graphs
19 end

The first two lines of the algorithm synthesise the PTDB by grouping unique
configurations for each process type. Then for each configuration of each process type
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one to three pattern graphs depending on the configuration and process type specifics
are generated.

class:clause,
MOOD:declarative, VOICE:passive

operation:update,
arg1:{process:process-type}

element:subject,
operation:update,

arg1:{participant:Role2}

element:complement,
operation:update,

arg1:{participant:Role1}

element:complement,
operation:update,

arg1:{participant:Role3}

Fig. 9.12 Declarative MOOD and passive VOICE graph pattern with three participant roles

class:clause,
MOOD:imperative, operation:update,

arg1:{process:process-type}

element:subject
element:complement,

operation:update,
arg1:{participant:Role2}

element:complement,
operation:update,

arg1:{participant:Role3}

Fig. 9.13 Imperative MOOD graph pattern with three participant roles

The declarative MOOD active VOICE pattern (depicted in Figure 9.9) corresponding
to the canonical form in PTDB is always generated. If the configuration does not
contain an expletive and accepts passive voice then the corresponding pattern is
generated with the first and second roles switched as in Figure 9.12. Note that role2 is
assigned to the subject and role1 to the first complement. If the configuration accepts
imperatives, then also a subject-less pattern graph is generated with the first role
omitted as depicted in Figure 9.13.

Directional processes are a special case. Examples 123 to 125 are equally valid
configurations. Example 126 is a generic representation highlighting the optionality of
these participants.

(123) The parcel travelled from London[So].

(124) The parcel travelled via Poland[Pa].

(125) The parcel travelled to Moscow[Des].
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(126) The parcel travelled (from London[So]) (via Poland[Pa]) (to Moscow[Des]).

And so in directional configurations, second, third and fourth participants are
optional and may occur in any order, but at least one of them should be present.
Therefore So, Pa and Des participants patterns should be generated for all combinations
as presented in Table 9.5.

So Pa Des
+ - -
- + -
- - +
+ + -
+ - +
- + +
+ + +

Table 9.5 Participant arrangements for Directional processes (order independent)

Finally, the CPGs are grouped by process type. This alleviates the burden of
selecting the number of patterns to test for a certain clause.

The patterns are generated in advance and so at runtime are ready for execution.
This decreases execution time. Next follows the description of how the generated
configuration graph patterns are used in the Transitivity enrichment phase.

9.6 Enrichment with TRANSITIVITY features
Once the constituency graph has been enriched with MOOD and nominal DEIXIS
features and the null elements created, it is ready to be enriched with TRANSITIVITY
features. The algorithm identifies, in each clause, the main verb and the potential
participant constituents and searches in the PTDB for the lexical item matching the
main verb and any of its extensions filtering (based on the clause constituency) the
possible configurations for the verb (comprising all the verb configurations). Then all
the graph patterns corresponding to the possible configurations are executed on the
clause, which, if matched, will enrich the clause CG.

Algorithm 14 outlines the semantic parsing process implemented in the current
parser which is a cascade of three loops. The first loop iterates through clauses in the
mood constituency graph and for each the candidate process types are identified by
considering: (a) the main verb, (b) the prepositions connected to it (either prepositional
particles, or prepositions introducing a complement or adjunct prepositional phrase
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Algorithm 14: Transitivity parsing
input : cg, dg

1 begin
2 for clause in clauses in mcg:
3 select from PTDB candidate process types and configurations
4 filter configurations fitting the clause
5 for config in valid possible configurations:
6 filter pre-generated pattern graphs of the config fitting the clause
7 for pattern in filtered pattern graph set:
8 enrich clause using pattern and mcg filtered by role constraints
9 end

listed in Table 9.6) or (c) phrasal expressions such as “take a shower” which were
explained in Section 4.2.3.

Role Prepositions
Des to,towards,at,on,in,
Ben to,for,
Attr as,
Ra on,in,
So from,
Pa through,via,
Loc in,at,into,behind,in front of, on
Mtch with,to,
Ag by,
Ph about,
Cog to

Table 9.6 Prepositional constraints on participant roles

The second loop iterates through the candidate configurations for each candidate
process type and selects the graph patterns that should be matched to the current
clause. Then iteratively, each of the retrieved graph patterns (in the third loop) are
applied to the clause graph. Line 7 enriches CG nodes with new features of the pattern
graph each time they are successfully matched. Before enrichment the CG nodes are
checked against an additional set of conditions (captured by Algorithm 15) which were
omitted in the pattern graph. These conditions may prevent enrichment even if the
pattern has been identified.
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Algorithm 15: Participant Role constraint check if a role is not illegal for
constituent

input : node, role, dg
1 begin

/* Cog, Em and Perc must be animates */
2 if role is Cog or Em or Perc:
3 check that the node has animate feature

/* clauses can only be phenomenas */
4 if node is a clause:
5 check that role is Ph only

/* prepositional phrases can only start with certain
prepositions for a role */

6 if node is a Prepositional Phrase:
7 get the list of allowed prepositions for the role
8 check if the prepositional phrase starts with any of the allowed

prepositions
9 end

9.7 Summary
This chapter has described how the constituency backbone is enriched with syntactic
and semantic features from the MOOD and TRANSITIVITY system networks using
graph patterns. Besides the core sections describing the enrichment algorithms, this
chapter has provided explanations about the graph pattern creation, CG extension
with null elements and the clean-up of PTDB

First null elements are identified and filled with proxy constituents. This process
ensures higher accuracy of semantic role assignments from the configuration patterns
in the second step.

The configuration patterns have been generated from the PTDB - a verb database
accounting for Transitivity patterns in Cardiff grammar. In order to generate these
patterns the PTDB had first to be cleaned up, unified and aligned to the present
Transitivity system. Then for each configuration a set of possible patterns were
generated, which vary based on mood, voice, process type and participants. Finally the
semantic role labelling step employs the same pattern based enrichment mechanism as
used in Section 9.2.

The algorithms can be improved by externalisation of constraints and conditions. In
the next iterations of Parsimonious Vole parser development should be towards higher
abstraction and separation between the grammatical constraints (in SFL represented
as systemic realisation rules) and the algorithm.



Chapter 10

Empirical evaluation

This chapter presents the evaluation the Parsimonious Vole parser. The aim of
the evaluation is to determine how accurately the text analysis is produced; and
in particular, how well the parser performs at unit boundary detection (i.e. text
segmentation), unit class assignment, element assignment, and feature selections. The
grammar that is employed in this evaluation was already introduced in Chapter 4,
the corpus annotations will be introduced in Section 10.1, the evaluation method in
Section 10.2, while the results will be covered in Sections 10.3 and 10.4.

The evaluation data was generated by comparing the labelled segments available
from the corpus annotations to the labelled segments from the parser output. The
parser accuracy is measured in terms of precision, recall and F1 scores. The parser
precision measures how many segments have been produced by the parser that are also
found by manual analysis; and the parser recall measures how many correct segments
have been produced by the parser relative to the total number of produced segments.
F1 score is a harmonic mean of the precision and recall.

Each corpus, introduced in Section 10.1, was annotated in a manner that slightly
differs from the analysis structure produced by the parser, due to differences in the
annotation methodology. These differences will be described in detail in Section 10.1.3.
Before then, to better understand the differences consider the example segments in
Listings 10.1 and 10.2. In this example, the segments differ in the way the spaces and
the end of sentences punctuation are framed into the clause segments and so, in this
evaluation, they are considered as partially (or closely) matching clauses. The exact
matches are used to establish a base line accuracy.

Listing 10.1 Example segment from the corpus
0 587 forced me into treatment611
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Listing 10.2 Example segment from the parser output
0 583 and forced me into treatment .612

The evaluation methodology that will be described in detail in Section 10.2, considers
perfect alignment between segment boundaries and their labels. Also it considers
alignment of segments with the same label and partial boundary overlap provided that
the difference between them is not too large and there is no other better matching
candidate at a shorter distance. This means that segment spans such as the ones in
Listings 10.1 and 10.1 are given some credit in the alignment process. The main reason
for taking segmentation discrepancies into consideration is to provide a wider sample
for the evaluation of systemic selections available for the MOOD and TRANSITIVITY
system networks. Another reason for keeping the partial matches is that discarding
them completely is not entirely correct either because it narrows down the evaluation
ground of the systemic features on the paradigmatic axis. The next section describes
the corpora used in current evaluation, followed by the evaluation methodology, and
finally the evaluation results are presented.

10.1 Evaluation corpus
This section briefly introduces the two corpora used in the evaluation of the Parsimo-
nious Vole parser. They are the OCD corpus annotated with Mood features, and the
OE corpus annotated with Transitivity features. Table 10.1 provides a summary of the
corpora descriptions.

Corpus name Meta-function Words Clauses Annotator(s)
OCD Mood 3446 529 Ela Oren & Eugeniu Costetchi
OE Transitivity 11021 1503 Anke Schultz & Tatsiana Markovic

Table 10.1 Evaluation corpus summary

Each corpus was annotated in a manner that slightly differs from the analysis
structure produced by the parser. After having presented each corpus in more detail
in the next two sections, I present the main differences between them and the parser
output in the last part of this section.
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10.1.1 OE corpus

The OE corpus is a smaller part of the Bremen Translation Corpus (BTC) corpus
that was annotated in the Cardiff Transitivity style during the PhD work of Anke
Schulz published in 2015. The BTC was created at the University of Bremen by
Kerstin Fischer, Anatol Stefanowitsch and Anke Schulz. It consists of comparable
and parallel texts. The comparable part consists of a series of newsgroup texts of
about 10,000 words of English text and another 10,000 words of German, taken from
the same register. The parallel part, called EDNA, is much larger and comprises
about 100,000 words of parallel English-German text. Schulz used in her thesis 10,000
words of parallel text and about the same of comparable text (Schulz 2015: 31). In
this evaluation only the English part is considered, which is called the OE corpus. It
comprises 31 files spanning 1503 clauses and 20864 words.

process
PROCESS-
TYPE

action

relational
RELATIONAL-
TYPE

attributive

possessive

locational

directional

matching

mental
MENTAL-
TYPE

emotion
EMOTION-
TYPE

desiderative

emotive

perception
PERCEPTION-
TYPE

two-role-perception

three-role-perception

cognition
COGNITION-
TYPE

two-role-cognition

three-role-cognition

environmental

influential

event-relating

Fig. 10.1 The fragment of the TRANSITIVITY system network that has been used in the
corpus

The corpus annotations, developed by Anke Schulz and Tatsiana Markovic (Schulz
2015: 36), cover the Cardiff TRANSITIVITY, THEME and MODIFICATION system
networks. The grammatical details and the annotation methodology are covered in
detail in Schulz (2015: 48-161). In addition, Schulz provided a set of annotations
performed in the same manner for the “Little Red Riding Hood” fairy tale comprising
157 clauses which are also included in this evaluation as part of the OE corpus.

For the purpose of the current evaluation only the TRANSITIVITY system was
considered. The extent to which the system network is covered in the corpus annotations
is limited to the top part of the original TRANSITIVITY system network. The used
system network fragment is depicted in Figure 10.1, while the whole system network was
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provided in Chapter 4. Employing the entire system network in the annotation process
increases in difficulty as the delicacy increases due to the time needed to perform the
task (McEnery et al. 2006: 33). The challenge of providing delicate (or fine-grained)
corpus annotations using large if not the entire extent of a system network, still has to
be addressed in the SFL community at large.

10.1.2 OCD corpus

The OCD corpus was created by Ela Oren and myself during a two week scientific
mission at the psychology faculty of Tel-Aviv University. The aim of the mission was
to design an empirical evaluation for the Parsimonious Vole parser (at that time still
under development) using texts consisting of self reports on the challenge of overcoming
Obsessive Compulsive Disorder (OCD).

My role was to offer technical support for the annotation tool (UAM Corpus
Tool), to prepare the annotation guidelines (provided in Appendix I), present relevant
literature and support with the annotation process. Oren selected English texts based
on relevance to her research, which was on people recovering from OCD; and after
receiving training in using the UAM Corpus Tool she annotated those texts. The
texts represent blog articles of people diagnosed with (OCD), who self-report on the
challenge of overcoming OCD. The annotations contain syntactic constituency elements
and clause MOOD features. The corpus contains four texts comprising all together
529 clauses and 8605 words.

clause STATUS
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TYPE
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Fig. 10.2 The part of the MOOD system network that has been used in OCD corpus annota-
tion
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The corpus annotations account for the main unit classes and the main clause
elements. The constituency annotation is based on the Cardiff grammar (Fawcett 2008)
with some consulting of traditional grammar (Quirk et al. 1985) for clarification. The
MOOD systemic selections are based on the Sydney grammar (Halliday & Matthiessen
2013b) using the network fragment presented in Figure 10.2.

The systemic selections are restricted to the network fragment depicted in Figure
10.2. It is a sub-part of the MOOD system network supported by the Parsimonious
Vole parser (described in Chapter 4 and depicted in Figure 4.1). Employing the entire
system network in the annotations was difficult because, as the delicacy increases,
the time spent for the annotation process increases drastically making the annotation
process very tedious and labour intensive (McEnery et al. 2006).

10.1.3 Differences between corpus annotation and parser out-
put

This section describes the main differences between how the parser structures output
and the methodology used to annotate each of the corpora. These differences are mainly
due to text normalisation and different treatments of conjunctions and punctuation.
In the OCD corpus there are also some segmentation errors as described below.

The Parsimonious Vole parser first normalises the input text before further process-
ing. In this process the tab characters and extra spaces between words are reduced and
special characters such as quotes, parenthesis, dashes and other orthographic characters
are re-represented in a uniform way. In the OE corpus most of the text is uniformly
formatted, but there are few deviations.

Listing 10.3 Sample of non-normalised raw text from the corpus
0 0 Red riding hood excerpt24

1 25"What have you in that basket , Little Red Riding Hood ?"82

2 83

3 84"Eggs and butter and cake , Mr. Wolf ."111

Listing 10.3 presents an example of raw text from the annotation dataset containing
an initial title line and two sentences separated by an empty line. The greyed index
numbers at the beginning and end of each line indicate character offsets. In OE corpus
files, the first line plays the role of a header containing the title or the file name and is
not considered for annotation or parsing. The extra spaces are eliminated during the
normalisation process causing an index shift.
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Before the annotation of the OCD corpus started the normalisation was not at
all addressed and so the text contains some irregularities. Mostly it is organised as
one sentence per line, but there are instances of extra blank lines or missing new line
characters leading to a few sentences per line as a block. The text may also contain
tabs and extra blank spaces or blank lines as in Listing 10.3 at index [82,84].

It is noteworthy to mention that there are segmentation errors in a few cases from
the OCD corpus. Some segments are either shifted and include the adjacent spaces
(e.g. “ getting this push” instead of “getting this push”) or, the converse, leaveing out
one or two characters of a marginal word (e.g. “the balanc” instead of “the balance”).

In the OCD and OE corpus annotations, punctuation marks such as commas,
semicolons, three dots and full stops are not included in the constituent segments while
the parser includes them at the end of each adjacent segment. An example of such a
case was provided in Listings 10.1 and 10.2 in the beginning of this chapter.

conjunct 1
and

conjunct 2

(a) Conjuncts annotated as parallel seg-
ments

conjunct 1

conjunct 2

and

(b) Conjuncts annotated as subsumed seg-
ments

Fig. 10.3 Treatment of conjunctions in the corpus compared to the parser

The treatment of conjunctions that was discussed in Section 3.4.6 differs as well. In
the corpus, the conjunctions (such as “and”, “but”, “so”, etc.) are excluded from the
conjunct segments; they are considered markers in the clause/group complexes rather
than part of the constituent. The parser, on the other hand, includes the conjunctions
into the succeeding adjacent segment. For example, in the corpus we find the segment
“forced me into treatment” while the parser produces a slightly larger segment “and
forced me into treatment.” that includes the conjunction at the beginning and the
full-stop at the end.

Moreover, the spans of the conjunct segments differ as well due to differences in
treatment. Instead of being analysed in parallel, having sibling status as depicted in
Figure 10.3a, the parser-generated conjunct segments are subsumed in a cascade from
the former to the latter as depicted in Figure 10.3b. This is one of the main reasons
for long distances between the matched segments when “conjunct 1” in Figure 10.3a is
matched to its counter part “conjunct 1” from Figure 10.3b.
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In this section were mentioned the most important aspects by which the corpora
annotations and parser output diverge. The evaluation methodology has been developed
to take segmentation discrepancies into consideration in order to provide a wider
evaluation ground to the systemic associations. The next section explains how this is
done.

10.2 Evaluation methodology
This section explains the design of the current evaluation and how it was conducted. I
start by explaining how the corpus annotations and the parser output are brought to
a common representation as batches of mono-labelled segments. Then I discuss the
method to compare the batches of segments in order to find (exact and partial) matches
between segments. The matches mean that the parser has produced the same output
as in the corpus annotations that is considered to be correct. The number of matched
and of non-matched segments is counted for each feature as part of the evaluation data.
More details on the method, the matching algorithm and different types of distance
measures that help dealing with partial matches in a controlled manner are presented
in Section 10.2.3.

10.2.1 Corpus annotations as a set of mono-labelled segments

To compare the segment labels and boundaries we need to understand how they
are represented in the annotations and parser output and how they can be brought
to a common form for comparison. This section explains the UAM Corpus tool
representation of the corpus annotations and how are they treated for the purpose of
this evaluation.

Both OCD and OE corpora annotations were created with the UAM Corpus Tool
(O’Donnell 2008a,b) version 2.4. They are recorded as segments spanning in the text
file from a start to an end index position and the set of features (selected from a
systemic network) attributed to that segment. There are no constituency or dependency
relations between segments. An example XML representation of an annotation segment
is provided in Listing 10.4. The id attribute indicates the unique identification number
within the annotation dataset, the start and end attributes define the segment between
two character offsets relative to the beginning of the text file, and the features attribute
represents all the systemic features attached to this segment (as labels), separated by
semicolons.
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Listing 10.4 Segment example in UAM corpus tool
1 <segment id="4" start="20" end="27"
2 features =" configuration ; relational ; attributive "
3 state=" active "/>

20 27

configuration,
relational,
attributive

(a) A segment with a set of features

20 27
configuration

20 27
relational

20 27
attributive

(b) A set of segments with a single feature
each

Fig. 10.4 Example of breaking down a segment with multiple features into multiple segments
with a single feature

In order to provide the possibility of evaluating each feature in a simple and
transparent fashion, the annotation segments are constrained to carry only one label
each. This means that the representation employed by the UAM corpus tool, with
multiple labels per segments, as depicted in Figure 10.4a, is not suitable as such and
needs an adaptation. When it is read from the input, the segments with multiple
features are broken down into multiple segments (over the same index span) for each
feature in the original segment, as depicted in Figure 10.4b. Doing so permits the
evaluation to focus on one or a set of features by freely and conveniently selecting only
the segments that contain exactly those features.

The representation of the parser output, to be suitable in the current evaluation,
needs a similar adaptation. In the next section I present how this is done.

10.2.2 Parser output as a set of mono-labelled segments

In order to compare the parser output to the corpus segments they need to be turned
into the same form. In this section, I describe the task of turning rich constituency
graphs (CG) into labelled segments similar to those from the corpus presented in the
previous section.

To make the parser output segments comparable to the ones in the corpus they
need to refer, in terms of their offsets and indexes, to the same raw text. This is not the
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case for two reasons. First, the parser identifies sentence boundaries and then processes
them one sentence at a time. This means that the original input text is chunked
based on punctuation and the indexes are reset for each sentence. Correspondingly
the parser output is produced with respect to the new indexes. Second, the text after
being chunked is normalised. This means that the word indexes are readjusted within
the sentence text and is directly reflected in the parser output. Before the evaluation
can take place the parser output segments need to be re-indexed with respect to the
original raw text.

To fulfil this task, the text processed by the parser is re-indexed back into the
original raw text at the level of words (tokens), constituents and sentences. Algorithm
16 provides pseudo-code of the re-indexing process.

Algorithm 16: Sentence level re-indexing of CG according to the raw text
input : CG bundle, text

1 begin
2 offset ← 0
3 for cg in CG bundle:
4 generate segments for cg indexed on text given the offset
5 offset ← the end of cg
6 end

Section 8.3 explained that the parser processes one sentence at a time. If more
than one sentence is provided as input text, then the produced output is not only one
but a set of constituency graphs. This is reflected in the input for Algorithm 16 which
is the array of CGs produced by the parser and the original text. The result of this
algorithm is a set of mono-labelled segments indexed according to the raw text, just as
the corpus annotations.

This task is performed by sequentially iterating the array of output constituency
graphs and re-indexing each of them with respect to the offset calculated after re-
indexing its predecessor. The process of re-indexing a CG structure is presented in
Algorithm 17. The returned result is a set of segments from the constituency graph
considering a given offset.

In Algorithm 17, the indexing is performed first at the word (token) level. At the
same time the mono-labelled segments are generated for each token. Then the CG
constituent nodes that are group or clause rank are re-indexed based on constituents
below them, i.e. words that have just been re-indexed in the step before. The indexes
of the constituent segments are set to be the beginning of the first word and the end
of the last word. The labels assigned to the segments are the constituent unit class,
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Algorithm 17: Constituent level re-indexing at the level of constituents according
to the raw text

input : cg, text, sentence offset
1 begin
2 words ← get cg the list of words
3 for word in list of sentence word segments:
4 find the word in the text after a given sentence offset
5 if word found:
6 start ← get first word start index
7 end ← get the last word end index
8 create a new segment (start, end, word)
9 else:

10 generate a warning (manual adjustment needed)
11 for node in cg in BFS postorder :
12 find the word span of the constituent
13 start ← get first word start index
14 end ← get the last word end index
15 labels ← get node class, function and features
16 create new segment (start, end, labels)
17 return set of segments
18 end

function(s) and all the systemic features. As the segments can carry a single label only
then for every feature, function and unit class a new segment is created. This is in line
with the practice described above concerning usage of mono-labelled segments.

Now that I have shown how the parser output is aligned to the original text in
the corpus and is represented as a set of mono-labelled segments, it is possible now
to compare the parser output and the corpus annotations in order to asses the parser
accuracy. The next section explains how this is done.

10.2.3 Segment alignment method and evaluation data

Both the corpus annotations and the parser output are represented as a set of mono-
labelled segments on the raw corpus text and can be compared to evaluate the
parser accuracy. This section explains how this comparison is done. I first present a
strict method of evaluation and then introduce a more permissive/tolerant method of
evaluation based on segment similarity and distance measurements.

First, a straight-forward evaluation method is to check for a perfect match between
every segment in the parser output and a corresponding segment in the corpus anno-
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tations. A perfect match means that each parser segment has a counterpart in the
corpus annotations whose start index, end index and label are equal. This signifies
that the parser generated segment is correct.

Using this method of evaluation the resulting data contain the counts of (a) how
many segments with the same label are matching, (b) how many corpus segments are
not matching and (c) how many parser segments are left unmatched. Then the data is
aggregated for each label in the corpus annotation and parser output combined.

In Section 10.1.3 I presented some differences between the parser output and the
corpus annotations. Most of these differences are comparable especially in that they
manifest as slight variations in the segment spans, i.e. shifted start and/or end segment
index, while the segment labels are exactly the same. The above presented method is
not satisfactory for the current evaluation because by design it leaves out about (20%)
of valuable partial matches. I present next an alternative evaluation approach where I
address how the differences between segments can be judged in an objective controlled
manner.

A simple metric for the difference between the segments taking into account their
start and end indexes is that of geometric distance. For two segments S(startS , endS)
and T (startT , endT ) the geometric distance is defined in Equation 10.1. We can replace
the difference between start and end indexes with ∆start and ∆end notation and obtain
the reduced form provided in Equation 10.2. This distance metric penalises errors in
proportion to the length difference and the shift between segments.

d =
√

(startS− startT )2 +(endS− endT )2 (10.1)

d =
√

∆2
start +∆2

end (10.2)

Accounting for differences in the segment spans is a well known task in mainstream
computational linguistics called text segmentation evaluation. A variety of segmentation
evaluation metrics have been proposed among which the most known are Pk (Beeferman
et al. 1999: 198–200), WindowDiff (Pevzner & Hearst 2002: 10), Segmentation
Similarity (Fournier & Inkpen 2012: 154-156) and Boundary Edit Distance (Fournier
2013). Each of these metrics have been shown to have strengths and flaws. For example
both Pk and WindowsDiff under-penalise errors (Lamprier et al. 2007) and have a bias
towards favouring segmentation with few or tightly-clustered boundaries (Niekrasz &
Moore 2010), while segmentation similarity tends to overly optimistic values due to its
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normalisation (Fournier 2013). Based on the evaluation data, these distances will be
further discussed in Section 10.3.1.

Now that the metrics for comparing segments have been introduced I move on to
present the second evaluation method, which, in addition to accounting for the exact
matches, accounts for close matches between segments using the distance measurements
presented above.

The second evaluation method is to align two sets of segments taking into con-
sideration exact and partially matching pairs. This task is similar to the well known
problem in computer science called the stable marriage problem (Gusfield & Irving
1989). I adopt here the computer science framing of the problem to explain the second
evaluation method.

The standard enunciation of the stable marriage problem is provided below and is
solved in an efficient algorithm named Gale-Shapley (Gale & Shapley 1962).

Given n men and n women, where each person has ranked all members
of the opposite sex in order of preference, marry the men and women
together such that there are no two people of opposite sex who would both
rather have each other than their current partners. When there are no such
pairs of people, the set of marriages is deemed stable (Iwama & Miyazaki
2008).

In the context of this evaluation the group of men is associated with the segments
generated automatically by the parser and the group of women with the segments
available from the manual analysis.

The standard stable marriage problem is formulated such that there is a group
of men and a group of women and each individual from each group expresses their
preferences for every individual from the opposite group as an ordered list. The
assumption is that the preferences of every individual are known and expressed as a
complete ordered list of individuals from the opposite group ranging from the most to
the least preferred one. Thus the preference list must be complete and fully ordered.

Algorithm 18 represents a modified version of Gale-Shapley algorithm. In the
process each parser segment is attempted to match with the closest corpus segment. A
match is established if there is no another parser segment that is even closer to the
candidate corpus segment. The remaining corpus and parser segments are marked as
non-matching.

Using this method of evaluation we can count for every distinct label (a) how
many segments match perfectly, i.e. the distance is zero, (b) how many segments
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Algorithm 18: The algorithm for matching parser and corpus segments
input : parser segments, corpus segments

1 begin
2 mark all parser segments and corpus segments free
3 compute distances from each corpus segments to every parser segments
4 while exist free segments in parser segments:
5 parser segment ← first free segment from parser segments
6 if exist in corpus segments un-compared segment to parser segment:
7 corpus segment ← the nearest among corpus segments to parser segment

with identical label
8 if corpus segment is free:
9 match parser segment and corpus segment

10 mark parser segment and corpus segment as non-free
11 else:
12 parser segment′ ← the current match of corpus segment
13 if parser segment is closer to corpus segment than parser segment′:
14 match parser segment and corpus segment
15 mark parser segment and corpus segment as non-free
16 mark parser segment′ as free
17 else:
18 mark parser segment as non-free and non-matching
19 fintq
20 end

partially match, i.e. the distance is greater than zero, (c) how many corpus segments
are unmatched and (d) how many parser segments are unmatched. Hence, we get a
four frequency counting numbers per label for each label used in the corpus annotation
and parser output combined. These frequency numbers are used to compute parser
accuracy metrics. Furthermore, the partial matches can be analysed to estimate the
degree of the deviation and derive insights what can be done about it.

10.3 Evaluation of syntactic structure generation
Having presented the evaluation method, I further proceed with presenting the evalu-
ation results in two parts: the first part focuses on the syntagmatic aspects and the
second part deals with paradigmatic aspects of the parser output. In this section, I
present the evaluation results for the parser accuracy to generate the syntagmatic
aspects of an SFL analysis (described in Chapter 8). The discussion of evaluation
results covers the accuracy of parser segmentation, the distribution of distances among
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the matched segments, and the accuracy to detect the main unit classes and clause
main Mood and Transitivity elements.

10.3.1 Segmentation evaluation

This section presents the evaluation data on text segmentation. As we will see below,
over 60% of the parser segments coincide with the corpus segments. The differences,
which were described in Section 10.1.3, are mainly due to differences in annotation
approach, text normalisation and some segmentation errors in the OCD annotations
(e.g. missing or including some extra characters).

The segmentation counts are provided in Table 10.2. The columns represent the
number of matched segments, the segments from the corpus that have not been matched
and the parser output segments left unmatched. There are 6665 segments that perfectly
align and 11073 segments that align partially or completely.

Matched Corpus non-matched Parser non-matched
Exact matches only 6665 1319 4332
Exact and close matches 11073 1319 4332

Table 10.2 Count statistics of matched and non-matched segments

Precision Recall F1
Exact matches only 0.61 0.83 0.71
Exact and close matches 0.72 0.89 0.80

Table 10.3 Segmentation accuracy

The statistics provided in Table 10.2 translate into precision, recall and F1 scores as
provided in Table 10.3. The parser segmentation accuracy is 71% for exactly matching
segments and 80% for partially matching ones. The distances between segments are
measured in several ways. Next follows an analysis of these measurements.

The segmentation differences are measured, as introduced in Section 10.2, using
several distance metrics: (a) geometric (Euclidean) distance, (b) edit (Levenshtein),
(c) generalised hamming distance (GHD) (Bookstein et al. 2002), Pk (Beeferman et al.
1999: 198–200), WindowDiff (Pevzner & Hearst 2002: 10). The data is calculated on
a number of over 12500 segment pairs out of which 62% are exact matches and 38%
are close matches.
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Before providing the interpretations to the data, I first show it is sufficient to discuss
two of these distances as the other ones are strongly correlated to them and thus can
be omitted from the discussion. Table 10.4 represents the Pearson correlation matrix
for the distance types.

Levenshtein Geometric Gener-
alised

Hamming

Pk WindowDiff

Levenshtein 1.00 0.99 0.53 0.45 0.54
Geometric 0.99 1.00 0.52 0.45 0.54
Generalised Hamming 0.53 0.52 1.00 0.84 0.92
Pk 0.45 0.45 0.84 1.00 0.92
WindowDiff 0.54 0.54 0.92 0.92 1.00

Table 10.4 Pearson correlation coefficients for pairs of distance measure types

The Pearson correlation coefficient measures the direction and strength of a linear
correlation between two variables. In this case, the variables are distance types. The
standard interpretation for this coefficient is as follows. A coefficient value between 0.1
and 0.3 indicated a weak linear relationship between the variables. If it is between 0.3
and 0.5 the relation is moderate, between 0.5 and 0.7 it is strong; and a score over 0.7
indicates a very strong correlation of variables.

Using the above interpretation we can partition the correlation matrix into two
groups of strongly correlated variables. At the same time both groups are only
moderately (~50%) correlated to each other. The Levenshtein and Geometric distances
are nearly identical with a 99% correlation though from this point on I will exclude
the Levenshtein distance and employ the geometric distance only as representative for
both.

The generalised Hamming distance, Pk and WindowDiff bear a strong correlation of
92% to WindowDiff. I exclude, from now on, Pk and generalised hamming distance from
further discussions and use WindowDiff as the representative of the three distances.
This choice is also based on the fact that WindowDiff was proposed to overcome
weaknesses of Pk (Pevzner & Hearst 2002: 10).

Above, I have shown that the geometric distance and WindowDiff distance are
the significant measures of distance in this segmentation evaluation. Next, I provide
descriptive data (in Table 10.5) and offer interpretations for each of them.

Table 10.5 presents the descriptive statistics (columns) for every distance type
(rows). The first three columns provide min, max and mean (M) values. The SD column
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Min Max Mean SD Rel
SD

Skewness Kurtosis

Levenshtein 0.00 219.00 5.37 15.99 2.98 5.57 42.63
Geometric 0.00 219.00 4.99 14.67 2.94 5.56 43.14
Generalised
Hamming

0.00 8.00 1.84 2.87 1.56 1.30 0.09

Pk 0.00 1.00 0.18 0.29 1.62 1.40 0.57
WindowDiff 0.00 0.86 0.15 0.23 1.59 1.32 0.28

Table 10.5 Descriptive statistics for each set of distance measurements between corpus and
parser segments

means standard deviation while the Rel SD represents relative standard deviation (or
coefficient of variation). The Skewness and Kurtosis are the last statistical indicators
for describing the distance distribution, which I will explain below.

The relative standard deviation is the ratio between the standard deviation and
mean value, i.e. (SD/M) and measures how concentrated the data is around the mean:
the more concentrated, the smaller the standard deviation. It is considered that a
relative standard deviation between 0 and 0.5 indicates tightly clustered data around
the mean; if it is situated between 0.5 and 1 then it means the data is more spread
out; if, however the value is over one then it means the data is very scattered.
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Fig. 10.5 Matched segments geometric distance distribution histogram (binning=25)

In the current evaluation, the geometric distance between corpus and parser seg-
ments spans from a minimum 0 to maximum 219 characters. The mean distance is 4.99,
which is close to the minimum point, with a standard deviation of 14.67 (deviation
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of almost 30 times the mean). The skew over 1, in this case 5.56, indicates a strong
asymmetry to the right, and the kurtosis of 43.14 (almost 15 times the threshold of 3)
indicates that most of the data, about 80%, gravitate towards the left, between 0 and
slightly over the mean, while the rest of the data point continue into a very long tail
to the right. This is depicted in Figure 10.5.
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Fig. 10.6 Matched segments WindowDiff distance distribution histogram (binning=25)

As appears in Figure 10.5, the data does not follow a normal but a power law
distribution (Newman 2005). This means that 62% of the segments are not shifted at
all and 83% of the segments are slightly shifted up to 5 characters. The rest (17%) of
the segments are shifted by more than 5 characters. These ratios approximate Patetto
80-20 distribution law but may as well fit Zipf’s law (Newman 2005). In future work,
properties of these data should further be analysed, including the distribution fitting,
that is selection of the theoretical distribution that fits best this dataset.

The next distance measure that I discuss is WindowDiff distance between corpus
and parser segments. One crucial difference to geometric distance is the normalisation
to a [0,1] interval. In the current evaluation, the WindowDiff distance distribution,
depicted in Figure 10.6, spans from a minimum 0 to maximum score of 0.86. The
mean distance is 0.15 with a standard deviation of 0.23. The mean value is close to
the minimum point, the relative standard deviation of 159%, the skew over 1 indicates
a strong asymmetry to the right, and the kurtosis of 0.28 indicates the distribution
does not have many outliers in the tail. These parameter values are similar to those of
the geometric distance but to a lesser degree.

One positive aspect of WindowDiff distance distribution is that the tail is not so
long due to its normalised structure. This results in aggregation of the outliers we
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have observed in geometric distance distribution into a compact spectrum. This way,
diminishing the kurtosis below 3, which no longer indicates an abnormally long tail to
fit a normal distribution.

The histogram in Figure 10.6 also resembles a power law distribution and more
analysis work needs to be done in the future, including the distribution fitting and
relation to the causes of partial matches in the first place.

This section presented the segmentation evaluation. The data shows that the parser
generates exact segments as provided in the corpus with an accuracy of 0.71 F1 score,
and segments that partially correspond to those in the corpus with an accuracy of 0.8
F1 score. The distances of the partially matched segments, in about 83% of the cases do
not exceed 5 characters, but can span, most probably by mistake, over 200 characters
in less than 17% of cases. Next I present the evaluation of the label assignments for
the segments corresponding to constituency units, i.e. (unit) classes and functions.

10.3.2 Unit class evaluation

In this and the next section I present the parser syntactic accuracy. It aims to measure,
in this section, how well the main unit classes, and in the next sections, the clause main
elements have been generated by the parser compared to the corpus. The unit class
evaluation is performed on the OCD corpus. This evaluation comprises the following
unit classes: clause and nominal, prepositional, adverbial and adjectival groups. No
clause complexes, group complexes or word types are included. The evaluation data
is depicted in Figure 10.7. The names of the unit classes are provided on the x axis
at the bottom of the graph while on the y axis the absolute number of occurrences is
provided.

The meaning of exact and close match has been explained in Section 10.3.1 and
from now on the label “Matched” will mean the segments that are either exactly or
closely matched all together, while the label with a remark “(exact only)” means that
it applies to only the portion of the exactly matched segments.

To make the data easier to read and interpret I present the evaluation data in a
table form using values relative to the number of matched segments. The absolute
values of the evaluation statistics are contained in the graphical form and also available
in the appendices in the table form. The relative evaluation data in this and the
following sections will be presented in tables with the same structure. Using Table 10.6
as example, the column meaning is as follows. The first column contains the name
of the unit class, element or feature. The column “Matched” contains the absolute
number of matched segments with a specific label. The three other columns represent
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Fig. 10.7 Bar chart of matched and non-matched segments for the main unit classes

the number of segments relative to the “Matched” ones. So the column “(%) Matched
(exactly only)” means that out of all the matched segments that many represent exact
matches and the rest up to 100% are partially matched segments. The column “(%)
Corpus non-matched” represent the number of segments relative to the total number of
segments of particular type in the corpus, which remain unmatched. The column “(%)
Parser non-matched” represents the number of segments (relative to the total number
of segments of particular type in the parser output) in the parser output that do not
have a correspondent in the corpus.

Matched (%) Matched
(exactly only)

(%) Corpus
non-matched

(%) Parser
non-matched

nominal-group 564.00 70.39 12.96 9.47
clause 477.00 13.84 9.83 12.64
adverbial-group 131.00 76.34 29.95 40.18
prepositional-group 90.00 41.11 25.00 27.42
adjectival-group 33.00 24.24 49.23 44.07

Table 10.6 The evaluation statistics relative to the number of matched segments for the main
unit classes
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The evaluation data from Table 10.6 indicate that most (over 70%) of the nominal
and adverbial groups are identified with the exact same borders as in the corpus while
clause borders exhibit the most disagreement reflected by their low score of exact
matches, only 13.84%. The proportion of unmatched unit class segments in both the
corpus and parser output varies between 9% for clauses and nominal groups, and
over 40% for adjectival and adverbial groups. These proportions, however, are better
interpreted when they are embedded into precision and recall scores, which are provided
in Table 10.7.

Exact match only Exact and close match
Precision Recall F1 Precision Recall F1

nominal-group 0.87 0.83 0.85 0.91 0.87 0.89
adverbial-group 0.53 0.64 0.58 0.87 0.90 0.89
prepositional-group 0.52 0.55 0.54 0.73 0.75 0.74
clause 0.49 0.56 0.52 0.60 0.70 0.65
adjectival-group 0.24 0.20 0.22 0.56 0.51 0.53

Table 10.7 Parser accuracy statistics for for the main unit classes

The scores provided in the first three columns are calculated with respect to
exact matches only and the last three columns with respect to all the matches. This
can be seen reflected in the lower precision, recall and F1 scores when compared to
their correspondents in the last three columns. The exact match scores, nonetheless,
constitute an appropriate baseline for the parser. Note that in all cases of a match,
close or exact, the segments bear the same label, and so, as explained in Section 10.1.3,
the source of the divergence is mainly in the segment index span.

The last three columns in Table 10.7 show that nominal- and adverbial-group units
are identified with almost 0.9 F1 measure, which is an encouraging result, while the
prepositional group and clause score 0.74 and 0.65 indicates that there is some space
for improvement. Further investigation is needed to discover the reason for the lower
scores as there seems to be no obvious cause other than corpus and/or parser errors.
There may possibly be errors in the corpus because it has been annotated by a single
annotator which may be unreliable. Also, as visible in Figure 10.7, there is a contrast
in the number of segments between the first two unit types and the last three with a
ratio of one to four or more. The lower number of exemplars (close to and below 100)
in this evaluation contributes, to a certain extent, to the lower accuracy statistics.
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10.3.3 Clause Mood elements evaluation

In this section I describe the evaluation statistics reflecting the parser capacity to
identify the main elements of a clause. The data available in the corpus unfortunately
does not permit us to evaluate elements of the lower rank units such as nominal,
prepositional, adjectival and other groups. Next, I present statistics on the clause
Mood elements, which were described in Chapter 4. These elements are present in the
annotations of the OCD corpus as explained in the beginning of this chapter in Section
10.1.
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Fig. 10.8 Bar chart of matched and non-matched segments for the clause main Mood elements

The OCD corpus annotations provide the main syntactic (Mood) elements in the
clause. Some of them, such as Auxiliary verbs, Main verb extension, Negation particle,
and others have been omitted in the corpus annotation and are thus missing in the
present evaluation. Figure 10.8 reflects the absolute values from the empirical data.

The parser accuracy measurements for the main syntactic functions are contained
in Table 10.8. The F1 score for subjects and main verbs is nearly 0.9 while the
complements and adjuncts are over 0.6. Finite element scores nearly 0.5 which is
surprisingly low for this element. The reason for this lays in the incomplete corpus
annotations. In the annotation process the conflated Finite and Main verb elements
were not distinguished. So, when there was a main verb that was also a finite, only
the main verb function was marked, which is incomplete by SFL standards. This



244 Empirical evaluation

incompleteness is clearly reflected in the contrast between low precision of 0.32 and
high recall of 0.98.

Exact match only Exact and close match
Precision Recall F1 Precision Recall F1

main verb 0.86 0.90 0.88 0.87 0.90 0.89
subject 0.82 0.94 0.88 0.84 0.95 0.89
complement 0.27 0.73 0.39 0.53 0.89 0.66
adjunct 0.50 0.62 0.55 0.58 0.69 0.63
finite 0.32 0.98 0.48 0.32 0.98 0.49

Table 10.8 Parser accuracy statistics for the clause main Mood elements

The number of complements unmatched in the parser output is nearly the same as
the number of matched complements. This is reflected in the 0.53 precision score and
nearly 0.9 recall rate which overall lead to an F1 score lower than that of subject and
main verb elements. This can be explained by a flaw, mentioned in Section 10.1, in the
annotation methodology as follows: the clausal complements were often annotated as
a new clauses omitting to draw the same segment and marking it to be a complement
in the clause above. This requires corpus revision and correction. However, adjuncts
have a higher number of unmatched segments on both sides and this may be due to
bugs in the parser and other mistakes or omissions in the corpus.

10.3.4 Clause Transitivity elements evaluation

The OE corpus, provides elements of Transitivity parsing as described in Chapter 9.
The elements employed in this evaluation are Configuration, Participant role and Main
verb while Circumstances are excluded from the study because they are not provided
in the corpus annotations. Figure 10.9 presents the evaluation data.

The configuration segments, in SFG, correspond to clause segments, the participant
role segments have as correspondents either the subject or complement segments, while
the Main verb segments are shared. The aggregation of Subjects and Complements
can be observed in Figure 10.9 where the number of participant roles is approximately
double the number of configurations. A configuration can have between one and three
participants, and current data shows an average of two participants per clause.

Note that in Figure 10.9 the scale stretches over 2500 which reflects a much larger
number of segments in the OE corpus than that available in the OCD corpus. The
size, and certainly a higher quality of annotations, is reflected in the fairly uniform
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Fig. 10.9 Bar chart of matched and non-matched segments for the clause main Transitivity
elements

evaluation results. The F1 (0.82), precision (0.74) and recall (0.92) scores vary very
little across elements when compared to scores of the syntactic elements shown in Table
10.8, which vary substantially from one element to another.

Exact match only Exact and close match
Precision Recall F1 Precision Recall F1

participant-role 0.62 0.88 0.73 0.74 0.92 0.82
configuration 0.22 0.52 0.30 0.74 0.92 0.82
main verb 0.62 0.86 0.72 0.71 0.90 0.79
Table 10.9 Parser accuracy statistics for the clause main Mood elements

In case of exact matches the evaluation scores are lower for the participant roles and
main verbs, situating at 0.73 F1 score, while the configuration accuracy plummeted
to 30%. As configurations correspond in SFG to clauses, boundary establishment
methodology plays a significant role in achieving exact matches. Thus the discrepancy
in the F1 score between exact and combined matches is explainable by a discrepancy
in the clause boundaries establishment and was already addressed in Section 10.1.3.

We come to the end of the syntactic structure evaluation where I have shown that
the parser generated segments exactly like those in the corpus with an accuracy of 70%
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on average; and partially matching segments with an average accuracy of 80%. The
parser detects unit classes on average with 52% accuracy for exact matches and 74%
for close matches. The Mood and Transitivity elements are detected on average with
71% and 81% accuracy.

A constituency parser that produces a syntactic analysis using comparable unit
classes and functions (using phrase structure grammars) such as for example Chen &
Manning (2014), Stern et al. (2017) or Kitaev & Klein (2018) reached an accuracy
of 95% for English. This state of the art in parsing with other grammars reflects
that there is a large space to improve the accuracy of Parsimonious Vole constituency.
But it should not be separated from the context of this work which is to parse with
constituency structures enriched with features from the system networks.

10.4 Evaluation of systemic feature assignment
In this section I present the evaluation results for the parser accuracy to generate the
paradigmatic aspects of an SFL analysis. It constitutes an evaluation of the approach
described in Chapter 9. The discussion of evaluation results covers selection of MOOD
and TRANSITIVITY features.

In this section the differentiation between exact and close matches is not considered.
The reason for this is the nature of the feature selection and assignment task, which
is concerned with the paradigmatic aspect of grammar. The systemic features are
assigned to already formed constituent units and are not directly affected by the
segmentation errors relevant at the constituent creation.

10.4.1 Evaluation of MOOD systemic feature assignment

In this section, I present the evaluation results for the systemic selections from the
MOOD system network that were assigned to clause units in the constituency structure.
These features are only available in the OCD corpus annotations. The fragment of the
MOOD system network that is covered by the corpus was presented in Section 10.1. It
is noteworthy that the parser provides more feature selections in the MOOD system
network, as described in Section 4.2.1, and that the current evaluation is limited to
only what is available in the OCD corpus annotations.

Table 10.10 provides the evaluation results for each of the MOOD features grouped
by system names, which are marked with capital letters. On average the parser assigns
systemic features with a precision of 59%. I do not discuss here the evaluation of each
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feature in part but analyse the results as a whole taking a few systems as discussion
examples. A detailed discussion addressing each system in part and aiming at deeper
evaluation understanding should be tackled in future work.

Match Corpus
non-matched

Parser non-
matched

Precision Recall F1

POLARITY-TYPE
positive 485 125 55 0.90 0.80 0.84
negative 57 10 70 0.45 0.85 0.59
VOICE-TYPE
active 553 102 68 0.89 0.84 0.87
passive 11 11 28 0.28 0.50 0.36
FINITNESS
non-finite 99 19 38 0.72 0.84 0.78
finite 526 33 554 0.49 0.94 0.64
NON-FINITE-TYPE
perfective 71 12 16 0.82 0.86 0.84
imperfective 26 9 24 0.52 0.74 0.61
DEICTICITY
temporal 446 74 55 0.89 0.86 0.87
modal 12 33 6 0.67 0.27 0.38
MOOD-ASSESSMENT-TYPE
temporality 35 17 27 0.56 0.67 0.61
modality 15 32 8 0.65 0.32 0.43
intensity 12 14 43 0.22 0.46 0.30
MOOD-TYPE
indicative 455 216 37 0.92 0.68 0.78
imperative 4 1 31 0.11 0.80 0.20
INDICATIVE-TYPE
declarative 355 260 27 0.93 0.58 0.71
interrogative 47 7 63 0.43 0.87 0.57
INTERROGATIVE-TYPE
wh 40 6 57 0.41 0.87 0.56
yes-no 5 3 8 0.38 0.62 0.48
WH-SELECTION
wh-subject 9 3 7 0.56 0.75 0.64
wh-adjunct 11 15 3 0.79 0.42 0.55
wh-complement 8 0 62 0.11 1.00 0.21

Table 10.10 The evaluation statistics available for the MOOD system network

The order in which the features appear in Table 10.10 roughly corresponds to
an increase in systemic delicacy. As delicacy increases there are increasingly fewer
occurrences where a system is employed. This is associated also with a decrease in
the accuracy although there are multiple factors influencing this among which parser
errors, corpus quality and small population size.

The precision and recall values vary quite a lot from a minimum of 11% up to
a maximum of 93% and their harmonic mean, the F1 score, between 30% and 87%
averaging to almost 60%. The details can be read in Table 10.11. The graphical
representation of these values distribution can be seen in Figures 10.10 and 10.11. A
noticeable feature is the presence of two peaks in the precision and recall distributions:
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Precision Recall F1
mean 0.57 0.73 0.59
standard deviation 0.27 0.18 0.21
min value 0.11 0.32 0.20
25% quantile 0.41 0.62 0.48
50% quantile 0.56 0.80 0.61
75% quantile 0.82 0.86 0.78
max value 0.93 1.00 0.87

Table 10.11 Descriptive statistics of the precision, recall and F1 scores for evaluated MOOD
features

one around 50% and the other one around 90%. They translate into a similar F1

distribution with peaks at 60% and 85%, a phenomena which I address next.

Fig. 10.10 The distribution of precision and
recall for evaluated MOOD fea-
tures

Fig. 10.11 The distribution of F1 score for
evaluated MOOD features

Within most systems, the F1 scores exhibit a contrast from one feature to the
other. What this possibly means is discussed in the next two cases. For example in the
POLARITY-TYPE system the positive polarity feature scores 84% accuracy while the
negative one almost 60%. As per Definition 3.2.10, the system features are mutually
exclusive. The polarity of an English clause is positive by default unless a negation
marker is found and this represents only 10% of the clauses in the corpus. This leads us
to the hypothesis that it should be sufficient for the parser to detect one feature with a
reasonably high accuracy then the converse feature should be detectable with a similar
accuracy if a selection in that system is expected. Yet the current data invalidate this
hypothesis as the grammar fails to represent exclusivity.

In the case of the POLARITY-TYPE system, the phenomena may be explained as
an incomplete parser implementation. The current version of implementation deter-
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mines polarity by checking for the presence of the negation verbal marker only without
considering cases of nominal and adverbial negative markers. Nonetheless a more
delicate polarity testing will have to take into consideration polarity indicators from
the subject, complement and adjuncts of various types that have been taken into con-
sideration during the annotation process. An incomplete, less delicate, implementation
for systemic choices is certainly a source of errors but it requires further investigation
to what extent it impacts these results.

Another way to look at the high discrepancy between the feature accuracy scores
can be as follows. Considering POLARITY-TYPE as example, it might be the case
that most instances of positive polarity are easy to detect. But, there is a portion of
cases, regardless of the polarity, that are difficult for the parser to distinguish and that
the negative polarity selections fall mostly within these ambiguous cases.

The phenomena of unbalanced accuracy scores among features of the same system
can be seen in multiple other cases. Let’s look at the VOICE-TYPE system. The
detection mechanism for VOICE-TYPE is implemented similarly to POLARITY-TYPE.
The parser checks whether there is a passive order of elements in the clause, otherwise
the active voice is selected. The detection of the active voice scores a significantly
higher accuracy of 87% than the passive one of only 36%. There is no delicacy variation
problem and still the discrepancy between the F1 scores of the two features is there.
But this could be explained by small sample of passive voice instances: only 22 are
annotated in the corpus.

This section presented the evaluation results for the MOOD systemic selections. On
average the parser assigns to clause constituents MOOD features with an accuracy of
almost 60%. A more thorough analysis for each system individually would indicate how
to improve the current parser. At the same time the quality of the OCD annotations
has not been assessed and therefore a more reliable corpus with MOOD annotations is
highly desirable for a similar evaluation.

10.4.2 Evaluation of TRANSITIVITY systemic feature as-
signment

In this section I present the evaluation of the TRANSITIVITY system network. As
was explained in Section 10.1 above, the OE corpus contains annotations covering only
a fragment of the TRANSITIVITY system, which is depicted in Figure 10.1. The full
Cardiff TRANSITIVITY system network was presented in Figure 4.4 in Chapter 4.
The parser provides more feature selections than those available in the corpus, which
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are described in Section 4.2.2, but the current evaluation is limited to only what is
available in the corpus.

Cardiff Transitivity analysis is semantic in nature and poses challenges in meaning
selection beyond constituent class or function. The approach of assigning this sort of
features was explained in Chapter 9. Here I would like to remind about an important
aspect of this approach that impacts the evaluation results, explaining in some cases
abnormally high recall rates.

In the grammar, described in Chapter 4, a clause can be assigned a single process
configuration and the participant constituents can take only one role each. In the
semantic role labelling task the situation is similar: a clause takes one semantic frame
and each constituent only one semantic label. This means that a parser shall produce
as output one semantic configuration that fits best the text.

The approach implemented in the Parsimonious Vole parser is such that it does
not always provide a single semantic configuration. Instead, it generates one or several
possible configurations for each clause instead of providing exactly one. The reason for
this is the mechanism by which semantic analysis is done. The constituency structure
is tested against a set of semantic graph patterns and the matching patterns enrich
the constituency structure with semantic features immediately. In some cases more
than one pattern matches the constituency structure leading to enrichment by multiple
graph patterns, which is not entirely correct.

Multiple feature assignments from the same system, however, are represented
as disjunctive sets in the constituency structure which ought to be interpreted as
alternating possibilities rather than actual assignments. This interpretations was
explained in Chapter 7 when the disjunctive sets were introduced.

Intuitively, this should reduce accuracy on all the elements but the effects are
mostly manifested at the level of participant roles as will be described below. First,
let’s discuss the evaluation results for the process types, which are provided in Table
10.12, and after, we will turn to the evaluation of participant roles.

In Table 10.12 mental and relational processes are the ones with highest F1 scores:
0.64 and 0.59. They are followed by influential and action process types while results
for the event-relating are not conclusive because of the very small number of occurrences
in the dataset. Note that considerable volume of annotations for process type sub-types
are provided for mental and relational processes as explained in Schulz (2015: 153-155).

Among the mental processes, two-role-cognition and three-role-cognition are parsed
with the highest accuracy of 51% and 50% correspondingly; whereas among relational
ones the attributive process type scores the highest, 49% while the rest of them score
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Match Corpus
non-matched

Parser
non-matched

Precision Recall F1

PROCESS-TYPE
mental 277 231 87 0.76 0.55 0.64
relational 338 297 174 0.66 0.53 0.59
influential 38 51 62 0.38 0.43 0.40
action 170 231 352 0.33 0.42 0.37
event-relating 1 28 0 1.00 0.03 0.07
RELATIONAL-TYPE
attributive 169 239 107 0.61 0.41 0.49
directional 30 13 127 0.19 0.70 0.30
locational 39 20 207 0.16 0.66 0.26
matching 2 0 69 0.03 1.00 0.05
MENTAL-TYPE
three-role-cognition 45 51 34 0.57 0.47 0.51
two-role-cognition 95 102 86 0.52 0.48 0.50
two-role-perception 13 12 102 0.11 0.52 0.19
three-role-perception 0 2 6
desiderative 0 0 81
emotive 0 0 87

Table 10.12 The evaluation statistics available for the PROCESS-TYPE system and few of
its subsystems from the TRANSITIVITY system network

much lower. This can be seen also in the higher number of non-matched segments for
each process type for every feature.

Precision Recall F1
mean 0.35 0.48 0.36
standard deviation 0.32 0.26 0.19
min value 0.00 0.00 0.05
25% quantile 0.07 0.42 0.24
50% quantile 0.33 0.48 0.39
75% quantile 0.59 0.55 0.51
max value 1.00 (0.76) 1.00 (0.70) 0.64

Table 10.13 Descriptive statistics of the precision, recall and F1 scores for evaluated TRAN-
SITIVITY features

Looking at the entire set of evaluation results for process types, the precision
and recall values vary quite a lot from a minimum of 3% up to a maximum of 100%
and the F1 score, between 7% and 64% averaging to 41%. The summary of the
descriptive statistics can be read in Table 10.13. The maximum of 100% precision is a
bit unfortunate because there is one instance of the event-relating process found by
the parser which also failed to find the other 28 thus the recall of 3% only. Hence, I
decided to ignore this value and use the next maximum which is 76% corresponding to
the mental process types. A similar case of 100% is for recall of the matching process
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type which was provided only two times in the corpus, but the parser generated 67
different instances of it. Therefore, I consider the next maximum recall value, 70% for
the directional process type.

Next, I provide an analysis of the evaluation data indicating a potential relation
between the increase in the delicacy and effect it has on the parser accuracy. The
accuracy of mental process detection is 64% whereas the average accuracy for the
mental sub-types (cognition, perception, desiderative and emotive) is 40%. The same
holds for relational process whose accuracy is 59%, whereas the average of its sub-types
(attributive, directional, locational, matching) is only 26%. I start by comparing the
number of mental and relational segments to the sum of mental sub-type segments
and sum of relational sub-type segments correspondingly.

Features Manual Parse /
mental 508 364 0.72

mental sub-types
(sum of)

320 549 1.72

/ 0.63 1.51
Table 10.14 The ratios between mental seg-

ments and the sum of mental sub-
type segments

Features Manual Parse /
relational 635 512 0.8

relational sub-types
(sum of)

512 750 1.47

/ 0.8 1.47
Table 10.15 The ratios between relational seg-

ments and the sum of mental sub-
type segments

Table 10.14 and 10.15 contain four frequency counts and four ratios. The total
number of segments available in the corpus and produced by the parser are provided
by column and the features are provided in rows. On the bottom and right sides of the
table two pairs of ratios between frequency numbers are provided.

Next, I discuss only the case of the mental process type (see Table 10.14) because the
values of the ratios are very similar and the same holds for relational processes. Perhaps
this holds for other process types but we still lack data for testing this hypothesis
further.

The first pair of ratios, provided in the lowest row, compare the number of segments
with mental feature to the sum of segments with any sub-type of mental feature
(i.e. cognition, perception, emotive, etc.). This ratio measures how well the feature
dependencies are preserved across delicacy levels. The second pair of ratios, provided
in the last column, compares the number of segments provided by the parser to that
available in the corpus for both the mental feature and the sum of its sub-types.

Table 10.14 shows that in the corpus the number of segments with the mental
feature is almost one fourth higher than what the parser provides (72 %). This result
means that probably not all the instances of a mental process have been detected
by the parser (i.e. 28% undetected). The same comparison ran on the sub-types of
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Match Corpus
non-

matched

Parser
non-

matched

Precision Recall F1

emoter 91 70 57 0.61 0.57 0.59
phenomenon 359 223 294 0.55 0.62 0.58
carrier 267 263 244 0.52 0.50 0.51
cognizant 82 84 104 0.44 0.49 0.47
agent 267 210 428 0.38 0.56 0.46
possessed 71 24 155 0.31 0.75 0.44
attribute 162 241 170 0.49 0.40 0.44
affected 93 70 663 0.12 0.57 0.20

Table 10.16 The evaluation statistics available for the PARTICIPANT-ROLE-TYPE system
from the TRANSITIVITY system network

mental process shows diametrically opposite results, i.e. three quarters more parser
results than in the corpus (172%) which is an indication of multiple false positives. A
possible explanation is the correlation between increase in delicacy and uncertainty,
i.e. the more delicate features are less precise in the parser results. As mentioned
in the beginning of this section, uncertainty, in this case, is manifested as excessive
production of process types represented in disjoint sets of possible options. Currently,
no ranking mechanism is put in place that would suggest the best option from the
candidate ones. Hence, the parser provides multiple feature selections from the same
system (in this case MENTAL-TYPE) for a constituent, whereas there should be a
single one. In the future this needs to be addressed by introducing a discrimination
mechanism. It could, for instance, collect all the possible matches first and then only
the most suitable to be assigned to the constituent unit, possibly by using frequencies
available from a corpus annotations like OE or other sources.

If we look again at Table 10.14 and compare the number of all mental sub-type
occurrences to the number of mental type occurrences, then we see that the ratio is
quite low (63%). As the delicacy of the features increases fewer of these features are
provided in the corpus. This is a direct manifestation of difficulty in annotating with
ever more delicate features. This ratio, therefore, measures the degree of incompleteness
at this level of delicacy. Comparing the same ratio for the parser generated segments
we notice an opposite result (151%). This ratio represents a measurement of the noise
(false positives) produced by the parser due to an increase in uncertainty resulting from
advancing to a more delicate system in the network (as was already explained above).
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So far we have discussed evaluation for the process types and now let’s turn attention
towards the feature assignments from the PARTICIPANT-ROLE-TYPE system. Table
10.16 presents the data considered for this evaluation along with the precision, recall
and F1 score for each participant role sorted according to F1 score in descending order.

In this evaluation only the participant roles that appear at least 100 times in the
corpus are considered. This restriction is inherited from Schulz (2015: 160-162) study
on the OE corpus.

The evaluation results for considered set of participant roles is summarised in Table
10.17. The precision varies from 12% to 61% with an average of 43%, and the recall
varies between 40% and 75% with an average of 56%. The data is characterised by
lower precision and higher recall, which is directly reflected in the F1 score averaging
to 46%.

The distribution of precision, recall and F1 scores can be seen in Figures 10.12 and
10.13. The noticeable feature is the peak of precision near the 0.5 mark and that of
recall around 0.6. They translate into F1 distribution as three groups: a small first
group near the minimum pole, formed by the affected feature; a second tall tower at
45% accuracy formed by cognizant, agent, possessed and attribute features; and a
third group around 55% accuracy on the right side of the graph formed by the emoter,
phenomenon and carrier.

Precision Recall F1
mean 0.43 0.56 0.46
standard deviation 0.16 0.10 0.12
min value 0.12 0.40 0.20
25% quantile 0.37 0.50 0.44
50% quantile 0.46 0.56 0.46
75% quantile 0.53 0.58 0.53
max value 0.61 0.75 0.59

Table 10.17 Descriptive statistics of the precision, recall and F1 scores for evaluated
PARTICIPANT-ROLE features
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In Table 10.16 a suite of eight features have F1 scores descending from almost 60%
to 44%. The affected features follow with half of the previous (20%). As the accuracy
decreases we can notice that few features display high recall especially in the case of
the affected feature, which spiked to 600% the number of matched segments. This is a
direct manifestation of the assignment of multiple roles to one participant by multiple
graph patterns (for the reasons explained in the beginning of this section). This
abnormally high number of participants produced by the parser must be addressed in
future work starting with an investigation of the Transitivity graph patterns generated
from the PTDB, in particular for the affected feature. The next section will conclude
this evaluation chapter.

10.5 Summary
In this chapter we have discussed how the empirical evaluation of Parsimonious Vole
parser has been conducted. The stage is set through a general presentation of the
corpora and what the task at hand is, i.e. identifying and comparing segments available
in the corpus annotations to those generated automatically by the parser. The accuracy
is determined by the parser ability to generate identical or partially overlapping
segments to those in the corpus.

Section 10.1 presented the OCD and OE corpora, which are employed in the
current evaluation exercise. The OCD corpus is used for measuring the accuracy of
the constituency structure produced by the parser and MOOD feature assignments to
clause units. The OE corpus is used to evaluate TRANSITIVITY feature assignments
to configuration and participant constituents. The parser output does not follow
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entirely the annotation methodology used in annotation of the corpus, therefore there
are a few differences to account for, which were explained in Section 10.1.3.

Section 10.2 explained how the current evaluation is performed. It starts by defining
what is evaluated, i.e. labelled segments, then explains how corpus annotations and
parser output are represented as sets of segments, and finally presents how these batches
are compared to one another deriving from that parser accuracy measurements and
how the measurement data is structured. The alignment algorithm, presented in the
same section, takes into consideration not only the exact but also the partial matches.

The following two sections, 10.3 and 10.4, presented the evaluation data and
discussed the findings. The evaluation of the segmentation task revealed that 71% of
the segment have identical spans and that 83% of the segments are identical or shifted
slightly (up to 5 characters). There are several ways to measure distance and among
the tested ones the most significant were the geometric distance and the WindowDiff
distance, while the other distances were omitted from the discussion because they
strongly correlated to one of these two. The results showed that, the parser assigns
classes to the constituent units with an accuracy of 74%; furthermore, clause main
Mood elements are assigned with an accuracy of 71.2% while the Transitivity elements
with an accuracy of 81%.

The current parser accuracy is similar to that reported by Souter (1996), i.e. 76%
for the first six solutions. This score, however, means that the correct parse tree
is found among the first six ones generated by the parser, which is a non practical
approach.

O’Donoghue (1991a), using Vertical Strip Parsing, scored 81%, which is about 5%
higher than that of the current parser. However his evaluation was based on a much
narrower coverage of English than that found in the OE and OCD corpora because he
used an extract from the COMMUNAL NL generator GENESYS PG 1.5 version.

When it comes to evaluating the accuracy of systemic assignments, the measured
accuracy varies across delicacy levels and between sibling features within the same
system, which was addressed for MOOD and especially for TRANSITIVITY in Section
10.4. The accuracy measurements are provided for a fraction of the MOOD system
network and a fraction of TRANSITIVITY system network. This is based on their
availability in the corpus annotations, which was described in Section 10.1. The
features from the MOOD system network are assigned, on average, with an accuracy
of 59%. The accuracy of TRANSITIVITY system network was measured for the
PROCESS-TYPE system and the PARTICIPANT-ROLE-TYPE system separately.
The accuracy of the former, on average, is 36% and the latter, on average, is 46%.
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The present evaluation results are significant in at least two major respects. First,
the parser overall accuracy is comparable to or slightly lower than the accuracy achieved
by previous attempts of generating SFL constituency structures e.g. 76% by Souter
(1996) and 81% by O’Donoghue (1991a). Moreover, the parser produces feature rich
output which sets apart Parsimonious Vole from other parsers. The features in the
produced output could be already considered useful in some practical situations where
identifying in text Mood or Transitivity features is needed. Second, this study shows
which areas are in need of improvement and provides some hints on what could be the
reason for the poor performance. Also, this evaluation is the first one and constitutes
the baseline for further incremental developments.

Even if it is a completely separate action, this evaluation can be useful for further
corpus improvements as well. When I mention corpus improvement I bear in mind
the OCD corpus in particular, which needs to be annotated by at least one more
annotator and tested for reliability. In addition, the corpora size is fairly small and
many systemic features are under-represented or missing completely as is the case,
for example, of event-relating, environmental, action sub-types and other processes.
It would be desperately necessary but quite unlikely to happen, as it is a practical
resource issue (McEnery et al. 2006: 33), to extend the corpus annotation to include
more delicate MOOD and TRANSITIVITY features. This would enable the study of
how the features vary and how accurately the parser detects them.

The next chapter concludes the work done so far providing new ideas and setting a
tone for what needs to be done in future work to improve the current results.





Chapter 11

Conclusions

This thesis aims at a reliable modular method for parsing English text with Systemic
Functional Grammars. To achieve this goal I designed a pipeline, which, starting
from a dependency parse of a sentence, generates a SFL-like constituency structure
serving as a syntactic backbone, and then enriches that structure with various systemic
features.

In this process, the first milestone is the creation of the constituency structure.
Chapter 3 describes the essential theoretical foundations of two branches of SFL: the
Sydney and Cardiff schools. It also provides a critical analysis in order to reconcile the
diverging points on the rank scale, unit classes, the constituency structure, treatment
of coordination, grammatical unit structure and clause boundaries; and states what is
the adopted position on each point.

In order to create the constituency structure from the dependency structure there
needs to be a mechanism in place to provide a mapping between the two both at
the theoretical and grammatical levels. The theoretical account of the dependency
grammar and how it is related to SFL was described in Chapter 5. The practical
aspects of the process, such as the algorithms and the enactment of inter-grammatical
mapping rules, were described in Chapter 8.

Before describing the parsing pipeline, to make clear what the basic ingredients of
this implementation are and how the algorithms are coded, Chapter 7 introduced the
basic data structures and operations. These structures were defined from a computer
science point of view emulating the needed SFL concepts. The main structures
are attribute-value dictionaries, ordered lists with logical operators and a few graph
types. In addition, the basic operations relevant for the parsing pipeline such as
conditional traversal and querying of nodes and edges, graph matching, pattern-based
node selection, insertion and update were also described.
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Once the constituency structure is created, the second milestone is to enrich it
with systemic features. Because systemic features can be associated with or derived
from the (dependency and constituency) graph fragments, in this work, graph pattern
matching is a cornerstone operation used for adding features to constituent units and
inserting new or missing constituents. These operations were described in detail in the
second part of Chapter 7, and Chapter 9 outlined how these operations are used for
the enrichment of the constituency backbone with systemic features.

The quality of graph patterns impacts directly on the outcome of the parser. The
more precise the graph patterns are the smaller the false omission and miss rate in the
parser output is, and thus the number of errors in general decreases while the accuracy
of feature enrichment increases. This was shown in the evaluation result discussion in
Chapter 10 in general, and in Section 10.4 in particular.

It is often the case for the TRANSITIVITY network that the graph patterns, in
their canonical form, list the mandatory participants of a semantic configuration. In
practice, however, instances of such configurations may leave unrealised up to two
mandatory participants. And so, if applied in their canonical form the patterns will not
identify such instances. In this thesis, mock constituents (null elements) are created in
the places where the presumed constituents should be, allowing in this way matches
with canonical graph patterns.

To identify and create the covert participants I turned to Government and Binding
theory, which accounts for this. In doing so, this thesis brings two more contributions:
(a) the theoretical mapping from GBT into dependency structures covered in Chapter 6
and (b) a concrete implementation of how to perform creation of the null elements
described in Chapter 6.3.

In Chapter 10 was described the empirical evaluation. The aim of the assessment,
in general, was to determine how accurately the text analysis is generated; and,
in particular, how well the parser performs at unit boundary detection (i.e text
segmentation), unit class assignment, element assignment and feature selections.

The data show that the parser assigns classes to the constituent units with an
accuracy of 74% and clause main Mood elements were detected with an accuracy of
71.2%, while the Transitivity elements were detected with an accuracy of 81%.

When it comes to evaluating the accuracy of systemic assignments, the measured
accuracy varies drastically across delicacy levels and between the sibling features within
the same system. This has been addressed for the MOOD and TRANSITIVITY systems
in Section 10.4. The features from the MOOD system network were assigned, on average,
with an accuracy of 59%. The accuracy of the TRANSITIVITY system network was
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measured separately for the PROCESS-TYPE system and the PARTICIPANT-ROLE-
TYPE system. The accuracy of the former, on average, is 36% and of the latter, on
average, is 46%.

Next I present how the main research questions were addressed and what the main
contributions of this thesis have been.

11.1 Research questions and main findings
In Chapter 1 six research questions were asked. This section shows how those research
questions are addressed in the current thesis and what the theoretical and practical
outcomes are.

One of the main theoretical contributions of this thesis is the investigation to what
degree cross-theoretical bridges can be established between SFL and other theories of
grammar, formulated as Research question 1. The approach to answering this broad
question was to further ask more specific questions. In particular I have focused on
studying correspondences to Dependency Grammar and Government and Binding
Theory, formulated in Research questions 2 and 3.

First, Research question 2 on the degree to which the syntactic structure of the
Dependency and that of Systemic Functional Grammar are compatible to undergo
a transformation from one into another was fully addressed in this thesis showing
that they are compatible and that the goal of transforming from one into the other
is feasible. The support for this claim is provided in Section 5.6, which addresses in
detail the cross-theoretical links between the Dependency and the Systemic Functional
theory of grammar. This cross-theoretical bridge constitutes a fundamental principle
for further deriving transformation rules from a dependency representation into a
systemic functional one. Such rules are enacted, in the parsing pipeline, to create the
systemic constituency structure as laid out in Section 8.3.

Second, Research question 3 about the usability of GBT for detecting places of
null elements in the context of SFL constituency structure was explored in depth
with positive results. This is addressed in Section 6.3, where rules, principles and
generalisations from GB theory are translated into DG and SFG frameworks. These
translations serve directly the goal of identifying places where (and by which relations)
the null elements should be injected. The translated rules are realised in the form of
graph patterns explained in detail in Section 9.3.

Addressing Research questions 2 and 3 and establishing cross-theoretical bridges to
DG and GBT constitute answers for Research question 1. The conducted theoretical
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investigation accompanied by the practical implementation and the evaluation results
show that aiming at reuse, in SFL contexts, of positive results from other areas of
computational linguistics constitutes not only a desirable but also a feasible goal. This,
however, does not guarantee in practice maximal accuracy and the extent to which the
goal is achieved depends to a large extent on the implementation.

As another contribution, this thesis offers an investigation on how suitable graph
patterns are in detecting systemic features and enriching the constituency structure.
In the current approach to parsing, graph patterns play a similar role as the realisation
rules play in the process of natural language generation with SFG. They serve as a
language for systematising grammatical realisations, and constitute a convenient form
of representing grammatical features employing both structural and lexico-structural
patterns. Graph patterns and the matching methods developed in this thesis can
potentially be applied for expressing many other grammatical features than the ones
presented here such as the remaining more delicate MOOD and TRANSITIVITY
features, those covered in the THEME or and other system networks.

Research question 5 on the extent to which graph patterns can be used to represent
systemic features based solely on structural aspects was addressed in Section 9.1
(focused MOOD system network). It is shown that some of the least delicate systems
can be dealt with only by structural patterns, however, as delicacy increases, the
inclusion of lexis into the graph patterns is inevitable. Moreover, for TRANSITIVITY
features, escaping the lexis is not possible at all, and constitutes the main reason
for employing a lexical-semantic resource such as PTDB. This only confirms the
already known strong link between grammar and lexis, which SFL considers a unitary
lexico-grammar (defined in Section 3.1).

In the end, Research question 6 on whether the PTDB is suitable as a lexical-
semantic resource for Transitivity parsing was addressed in Chapters 9 and 10. I
explained how graph patterns can be generated automatically from PTDB before
describing how it was turned into a machine readable resource. Nonetheless, the
evaluation of the currently implemented method to assign Transitivity features does
not provide encouraging results, reaching only 42% accuracy (10% less that for Mood
features). These performance indicators are explained in Section 10.4.2, and further
discussed in Section 10.5. This level of accuracy, among others, is due to the currently
implemented enrichment mechanism, which applies all the matching graph patterns to
the constituency structure instead of applying the one with highest probability. This
means that higher accuracy can be achieved provided that the implemented approach
is improved by reducing the number of patterns per feature. The degree to which the
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accuracy will improve if the enrichment mechanism is enhanced remains a question for
future work.

Finally, the evaluation results presented in Chapter10 are significant in at least two
major respects. First, the parser accuracy of generating SFL constituency structures is
comparable to or slightly lower than the accuracy achieved by previous attempts, e.g.
76% by Souter (1996) and 81% by O’Donoghue (1991a). However, the parser generates
feature rich output which sets apart Parsimonious Vole from other parsers. The features
in the generated output could be already considered useful in some practical situations
where identifying in text Mood or Transitivity features is needed. Second, this study
shows which areas are in need of improvement and provides hints on what can be
improved. Also, this evaluation can be considered an initial baseline for incremental
development in future work.

11.2 Limitations and future work
This work has a number of limitations. This section introduces the most important
ones along with improvements that are desirable or worth considering.

Parsimonious Vole parser grammar

The grammar proposed in Chapter 4 is a combination of elements taken from both
the Cardiff and the Sydney grammars. Even if the chosen grammar parts have been
carefully motivated, explained and argued for as a whole, how well they fit together
still requires scrutiny by grammarians and a validation with larger corpora.

The graph patterns were manually created, which is error prone and requires careful
validation. This work can be supported and facilitated by a workbench editor, debugger
and validator for graph patterns and systemic features combined. The workbench
could build on top of and extend the UAM Corpus tool with these new functionalities.
As no editor for grammatical graph patterns exists yet, developing one in the future is
desirable.

Graph patterns from Nigel grammar

One important experience this thesis provides is the use of graph patterns for detecting
systemic features, based on structural and lexical cues in the provided constituency
structures. For the parser implementation, all of the MOOD patterns were created
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manually while the TRANSITIVITY patterns were created from a simple lexical-
semantic database, the Process Type Database (Neale 2002).

At the same time, the Nigel grammar (Matthiessen 1995), the largest existing SFL
grammar (Bateman 2008: 27), was not employed in this work even if it is very relevant.
In part this is due to the reasons explained in Chapter 2, i.e. the previous attempts
to parse with full SFL grammars directly had to accept certain limitations. In future
work, however, investigating how graph patterns can be generated from the system
network realisation rules available in Nigel will be very valuable and highly desirable
work. Not only can it save time and reduce potential errors of the manual authoring of
graph patterns, but it can provide a very rich set of graph patterns covering system
networks outside the scope of this work.

Adoption of verbal group

The current grammar does not include the verbal group unit but treats the elements
of what would be a verbal unit as elements of the clause. This decision is motivated in
Section 4.1.1 and is in line with the Nigel grammar and with the proposal put forward
by the Cardiff grammar. This resolves the problem of discontinuity in the syntactic
units which was an issue for the current implementation.

(127) Are you feeling cold?

A simple example of a discontinuity is provided in Example 127. The verbal group
here is formed of the Auxiliary “are” and the Main verb “feeling”. In principle, in the
syntactic analysis, the units of analysis should be continuous. This is known to not
always be the case as illustrated by Example 127 where the subject “you” splits the
verbal group in two.

Adopting a gap resilient constituency structure would permit inclusion into the
generated analysis not only of verbal groups but also enable Thematic analysis, which
often employs discontinuous units, and the adoption of other unit classes.

Transition to semantically motivated unit classes

Cardiff unit classes are semantically motivated when compared to the more syntactic
ones in the Sydney grammar. This is stated in Fawcett (2000: 193–194) and was briefly
presented in Section 3.3 and further discussed in Section 4.1.

For example, the nominal structure proposed in the Cardiff grammar (discussed
in Section 4.1.3), uses elements that are more semantic in nature than the syntactic
and functionally motivated ones offered in the Sydney grammar. For example compare
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various types of determiners: representational, quantifying, typic and partitive, in the
Cardiff grammar and only the deictic determiner in the Sydney grammar where the
distinctions by types are provided in systemic features rather than distinct unit classes.

In order to shift towards semantically motivated nominal unit structure two problems
need to be addressed: (a) how to detect semantic heads and (b) how to craft (if none
exists) a lexical-semantic resource to support detection of various determiners in the
nominal group. Building lexical-semantic resources asked at point (b) represents a
potential solution for point (a) as well. Employing some of the existing resources such
as the Nigel grammar, because it is built in Sydney style, could and most likely be
a suitable starting point for addressing point (b). In addition, other non-SFL lexical
resources such as WordNet (Miller 1995) or FrameNet (Baker et al. 1998) could be
considered in this context. Yet resorting to these lexical resources would not be a
straightforward solution and would require more adaptations so that they are useful in
the SFL domain.

The same holds for Adverbial and Adjectival groups (Section 4.1.4), which in the
Cardiff grammar are split into Quality and Quantity groups. Existent lexical resources
such as WordNet (Miller 1995) or FrameNet(Baker et al. 1998) combined with the
delicate classification proposed by Tucker (1997) may yield positive results in parsing
with Cardiff unit classes. Just as in the case of verb groups discussed in the previous
sections, moving towards semantically motivated unit classes would greatly benefit
applications requiring deeper natural language understanding. However, this will likely
come at the cost of making the parsing much harder and thus a trade-off might be
needed.

More delicate TRANSITIVITY graph patterns

The PTDB (Neale 2002) is the first and only lexical-semantic resource for the Cardiff
Transitivity metafunction. In its original form, this resource was not machine readable,
with its usability limited to dictionary-like search by linguists in the process of manual
text analysis. It was rich in human understandable comments and remarks across all
fields and so not fully formal enough to be employed in computational tasks. In the
scope of the current work the PTDB has been cleaned and brought into a machine
readable form.

In mainstream computational linguistics, there are several lexical-semantic resources
used for Semantic Role Labelling (a task similar to Transitivity parsing), such as
FrameNet (Baker et al. 1998) and VerbNet (Kipper et al. 2008). Mapping or combining
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PTDB with these resources into a new one would yield benefits for both: potentially
inspiring the internal organisation for VerbNet and extending the coverage of PTDB.

Combining PTDB with VerbNet for example, would be my first choice in the task
of improving Transitivity analysis for the following reasons. PTDB is well semantically
systematised according to the Cardiff Transitivity system, however, it lacks any links to
syntactic manifestations. VerbNet, on the other hand, contains an excellent mapping
to the syntactic patterns in which each verb occurs, each with associated semantic
representations of participant roles and some first order logic representation. Also, the
lexical coverage of VerbNet is twice as wide as than that of PTDB.

Resorting to resources like FrameNet or WordNet could bring other benefits. For
example, FrameNet has a set of annotated examples for every frame which, after
transformation into the Transitivity system, could be used as a training corpus for
machine learning algorithms.

Towards speech function analysis

As Robin Fawcett explains (Fawcett 2011), Halliday’s approach to Mood analysis
differs from that of Transitivity in the way that the former is not “pushed forward
towards semantics” as the latter is. This claim, however, is controversial and not
endorsed by the Sydney grammarians. The meaning proposed by Fawcett in the Cardiff
MOOD system network is similar to and incorporates concepts from Speech Act Theory
(Austin 1975) or its later advancements (Searle 1969). Such theories, in mainstream
linguistics, are placed under the umbrella of pragmatics (which Sydney grammarians
reject). Operating with concepts such as speech acts, called in SFL speech functions
(Hasan 1984), would take the interpersonal text analysis to a new level of meaning with
potential benefits in applications where interactivity is a feature of primary concern.

Halliday proposes a simple system of speech functions (Halliday & Matthiessen
2013b: 136) (considered as part of semantics and outside grammar) which Fawcett
develops into a quite delicate system network (Fawcett 2011). It is worth exploring
ways to implement Fawcett’s latest developments especially that the two are not
conflicting but complementing each other. In future work it can be explored how
to use the Hallidayan MOOD system as a foundation to transit towards the Cardiff
MOOD system (a merger of semantic and grammatical systems). Such exploration
can be facilitated by the fact that Sydney MOOD system network has already been
implemented and described in the current work.
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Adoption of group complexing

The group complexing structures are well described in the Sydney grammar (Halliday
& Matthiessen 2013b: 567–592). Such structures are not considered in the current
work except for the particular case of conjunction treatment, which is described in
Section 3.4.6. Adopting a general framework of unit complexing is highly beneficial
as it contributes to a more meaningful analysis. The immediate applications of group
complexing, in the context of this thesis, can be seen in the case of verbal group
complexes presented next.

The one main verb per clause principle of the Cardiff school that I adopted in
this thesis (briefly discussed in Section 4.1.1) provides a basis for simple and reliable
syntactic structures. Also, it represents a simple clause boundary detection rule. The
alternative is adopting the concept of verbal group, simple and complex, as proposed by
the Sydney school in Halliday & Matthiessen (2013b: 396–418, 567–592), a much richer
and complex approach. The verb complex provides a richer semantically motivated
description (Halliday & Matthiessen 2013b: 567–592), however, analysing text with
such constructs is difficult and subject to ambiguities.

Ants keep biting me
Subject Finite Predicator complement
Actor Process: Material Goal/Medium

Verbal group complex
expansion, elaborative, time-phase, durative

α−→= β

Table 11.1 Sydney sample analysis of a clause with a verbal group complex

Ants keep - biting me
Subject Finite/Main Verb Complement
Agent Process: Influential Phenomena

Subject (null) Main Verb Complement
Agent Process: Action Affected

Table 11.2 Cardiff sample analysis of a clause embedded into another

One way to approach this is in two steps (similarly to semantic head detection
discussed in Section 3.4.5): first, generating the syntactic analysis and then enriching
it to a more meaningful analysis. Even though an approach in two steps such as the
one suggested here is subject to criticism, in part, it can already be implemented
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by considering Cardiff influential process types (implemented as part of Transitivity
parsing).

Consider the sample analyses in Tables 11.1 and 11.2. The two-clause analysis
proposed by the Cardiff school can be quite intuitively transformed into a single
experiential structure with the top clause expressing a set of aspectual features of the
process in the lower (embedded) clause just like the Sydney analysis in Table 11.1.

The class of influential processes proposed in the Cardiff transitivity system was
introduced to handle expressions of process aspects through other lexical verbs. I
consider it as a class of pseudo-processes with a set of well defined and useful syntactic
functions but with incomplete semantic descriptions. The analysis with influential
process could be used as an intermediary step towards a more meaningful analysis,
such as the one suggested by the Sydney grammar. Alternatively, the analysis process
could be redesigned to generate complex verbal units directly taking into account the
available lexical-syntactic resources. This rule of thumb is described in Generalisation
11.2.1.

Generalisation 11.2.1 (Merging influential clauses). When the top clause has an
influential process and the lower (embedded) one has any of the other processes, then
the two clauses can be merged into one and the two verbs into a verb complex enriched
with aspectual features.

Of course, this raises a set of problems that are worth investigating. First, the
connections and mappings between the influential process system network described in
the Cardiff grammar and the system of verbal group complex described in the Sydney
grammar (Halliday & Matthiessen 2013b: 589) should be investigated. Second, one
should investigate how this merger impacts the syntactic structure.

The benefits of such a merger lead to an increased comprehensiveness, not only
of the Transitivity analysis, illustrated by the examples in Tables 11.1 and 11.2, but
potentially apply to the modal assessment illustrated by Examples 128 and 129 and
similar phenomena.

(128) I think I’ve been pushed forward; I don’t really know, (Halliday & Matthiessen
2013b: 183)

(129) I believe Sheridan once said you would’ve made an excellent pope. (Halliday &
Matthiessen 2013b: 182)
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Taxis analysis

In the Sydney grammar, the logico-semantic relations employed to describe inter-clausal
relations are called taxis relations (Definition 3.2.14). Currently, the Parsimonious Vole
parser implements a simple taxis analysis technique based on graph pattern matching,
similar to the one described in Sections 7.4 and 7.5. Description of this work, however,
is not included in this thesis because it has not yet been tested.

A database of clause taxis patterns, represented as regular expressions, is listed in
Appendix D. It has been developed according to a systematisation in IFG 3 (Halliday
& Matthiessen 2004). Each relation type has a set of patterns ascribed to it which
represent clause order and presence or absence of explicit lexical markers or clause
features.

In the taxis analysis process, each pair of adjacent clauses in the sentence is tested for
compliance with TAXIS pattern in the database. The matches (there may be multiple
ones for a single system feature) represent potential manifestations of the corresponding
relation with no way to distinguish at the moment which pattern is, in fact, more likely
to be correct. A similar problem was described for the TRANSITIVITY system and a
potential solution was also described in terms of a discrimination mechanism in Section
10.4.2. More work, however, needs to be conducted in this area.

Dealing with covert elements and ellipsis

In the current approach to Transitivity parsing, accounting for the covert (or the so-
called null) elements was taken as an instrumental goal to increase accuracy of parsing.
Whether such elements should be accounted for in the grammar or whether they exist
at all is still under debate in the linguistic literature, and, of course, arguments exist
for and against the null elements.

One future development would be to change the way graph patterns are generated
from PTDB. The resulting graph patterns would need to be shaped such that the null
elements are no longer a requirement for Transitivity parsing. This would, among other
things, eliminate the need to create null element units in the constituency structure
and would make the cross-theoretical links to GBT obsolete in this task.

I need to make, however, a reference here to ellipsis, a well studied linguistic
phenomenon. An elliptical construction is the omission from a clause of one or more
words that are nevertheless understood in the context of the remaining elements. There
is a variety of ellipsis types, among which are the null elements mentioned above.
Whether to fill the gaps in the syntactic structure and which ones is a question that
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should not be abandoned too soon as providing rich and explicit structures can have
positive outcomes in practical contexts.

Bridges to other grammars and linguistic theories

In this thesis exploration of cross-theoretical bridges is limited to two other traditions:
that of Dependency grammars (specifically Stanford Dependency Grammar) and that
of Phrase-Structure Grammars (specifically Government and Binding Theory). There is
a wider set of useful cross-theoretical correspondences to establish that can materialise
as positive reuse outcomes.

Due to compatible approaches to language analysis and because some work has
already been done in this direction, among the most interesting correspondences would
be Lexical Functional Grammars (Bresnan et al. 2015), Head-Driven Phrase Structure
(Pollard & Sag 1994), Combinatory Categorial Grammar (Steedman 1993, 2000) and
Tree Adjoining Grammars (Kroch & Joshi 1985), to name just a few. LFG has a
functional layer in many respects similar to the functional layer of a (Nigel-style) SFG.
Correspondences from TAG to SFG were already addressed by Yang et al. (1991) and
in the last section of Bateman (2008) in order to address among others the gap in the
syntagmatic representation. Bateman & Teich (1991) explored the possibility to adopt
some aspects of HPSG for unit complexing. Having traced these new correspondences
it will become possible to create the constituency backbone in the SFL style in a similar
fashion as it is currently done from the Dependency Grammar.

The current implementation also requires an immediate upgrade to the latest version
of the Stanford parser. Between 2006 and 2015 the Stanford parser (Marneffe et al.
2006) was employing the Stanford dependency model for English (and a few other
languages). Afterwards, in 2016, Nivre et al. (2016) proposed the language independent
Universal Dependency scheme which was integrated into the Stanford Parser and
replaced the Stanford dependency model. Around 2015–2016 the Parsimonious Vole
parser was developed based on the Stanford dependency model. No transition to
universal dependency was considered at that time because it was not mature or stable
enough. For this reason the current thesis employs the legacy Stanford grammar and
so a transition to universal dependency model must be considered in future work, in
order to keep up the pace with the latest developments in the Stanford dependency
parser.
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Efficient graph rewriting method

In the current work the SFL style constituency backbone is created from dependency
graphs. This is treated in computer science as graph/tree rewriting. There is extensive
literature addressing this task such as Barendregt et al. (1987), Courcelle (1990),
Plasmeijer et al. (1993) and Grzegorz (1999).

As at the time of developing the Parsimonious Vole parser I was exploring the precise
properties necessary for transforming from the dependency into systemic functional
constituency structures. Now that they are known, a more specific graph rewriting
method can be considered. And so in the prototype implementation no pre-existing
algorithm has been used. Future work needs to integrate the state of the art methods
in graph rewriting and potentially improve or replace the current graph rewriting
algorithm. Such a decision would need to be based on the efficiency and ease of
providing the transformation rules.

Execution order of graph patterns

For a given constituency structure the current enrichment mechanism fires all the
available graph patterns and any of the matching ones enrich the constituency structure.
This can be costly when the number of patterns increases dramatically. Such a risk is
imminent if, for example, the graph patterns are generated from the Nigel grammar as
mentioned above. That richness poses the danger that too many graph patterns will
make the parsing if not uncomputable, then at least too slow to be practical.

This risk can be countered, to an extent, by putting in place a selection mechanism
that would seek to minimise the number of fired graph patterns for a given constituent
unit. Such a mechanism needs to implement a search mechanism in the space of features
covered by the graph patterns taking into account the systemic dependency between
features and, therefore, between patterns. Moreover, a fitness function measuring
information gain per graph and execution cost must be considered. Such a mechanism
may already speed up the current implementation to an extent.

Dealing with multiple patterns per systemic feature

In the current implementation for each process type configuration in PTDB multi-
ple patterns graphs were generated. This is one of the leading causes of decreased
TRANSITIVITY parsing accuracy as was described in Section 10.4.2.

To prevent features from the same system from being assigned to constituent
units simultaneously (even if clearly marked as a disjunctive set of possibilities) a



272 Conclusions

discrimination mechanism should be implemented. Such a mechanism collects all the
possible pattern matches first, and then assigns only the most suitable one to the
constituent unit. This mechanism can be based on calculated probabilities or frequency
in a corpus. More investigations are needed on these issues.

Analysis of errors from the current evaluation

The evaluation performed in the current work does not go into detail analysing the
types of errors the parser commits. In order to improve the performance of the
current implementation the known errors need to be investigated down to the level
of transformation rules, graph pattern and systemic feature disjunctions. Therefore,
it is essential to carry on further investigation of segmentation errors (e.g. distance
distribution for each feature) and errors in the constituency structure (false positives
in the parser generated analysis and true negatives in the corpus). Results of a deeper
error analysis will give information concerning how to correct the transformation rules
from the dependency into SF constituency structures. Similar benefits can be achieved
by investigating the errors in the systemic feature assignments.

Investigation of probabilistic logics for SFG parsing

The problems of computational complexity in parsing with SFGs is explained in Chapter
1 and treated at length in Bateman (2008). At the heart of this problem lies the
combinatorial explosion caused by the complex network of disjunctive systems. One
way to deal with large combinatorial spaces is by using search approximations. For
logical systems such an approximation is materialised in the form of probabilistic logics.

Martin Kay was the first to attempt formalisation of systemic functional syntagmatic
structures that would become known as Functional Unification Grammar (FUG) (Kay
1985). This formalisation was adopted in other linguistic frameworks such as HPSG and
Lexical Functional Grammars. For SFGs, however, using first order or even description
logic reasoners has been shown to have severe complexity problems (Bateman 2008).
Employing probabilistic logics, therefore, may offer a further way of overcoming that
complexity issue.

Markov Logic (Domingos et al. 2010; Richardson & Domingos 2006) draws my
attention in particular, which I consider a good candidate for parsing with SFGs. It is a
probabilistic logic, which applies ideas of Markov networks to first order logic enabling
inference under uncertainty. What is very interesting about this logic is that tools
implementing it have learning capabilities not only of formulas weights but also of new
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logical clauses. Moreover, it has been shown to be computationally feasible on large
knowledge bases. The extent of such clauses should, however, still be investigated.

Markov logics can be employed, in the context of the current work, for addressing
the graph pattern creation problem. Besides creating the graph patterns manually or
from existing resources such as PTDB or advanced grammars such as Nigel, another
possibility worth exploring is learning them from a corpus.

Markov Logic tools, such as Alchemy1, Tuffy2 and others, also have machine
learning capabilities. Since graph patterns can be expressed via first order functions
and individuals, and assuming that a (richly) annotated corpus in SFL style is available,
these tools could be employed in an experiment to inductively learn pattern structures
(and features) from the corpus. The results of such an exercise are useful to validate or
challenge the patterns implemented in the parser, or even discover new patterns.

This suggestion resembles the Vertical Strips (VS) of O’Donoghue (1991b). The
similarity is the probabilistic learning of patterns from a corpus. The difference is that
VS patterns are syntactic segment chains from the root node down to tree leafs while
with machine learning more complex patterns can be learned independently of their
position in the syntactic tree.

11.3 Practical applications
A wide variety of tasks in natural language processing, such as document classification,
topic detection, sentiment analysis, word sense disambiguation, do not need parsing.
These are tasks that can achieve high performance and accuracy with no linguistic
features or with shallow syntactic information such as lemmas or parts of speech by
using powerful statistical or machine learning techniques. What these tasks have in
common is that they generally train on a large corpus and then operate again on
large input text to finally yield a prediction for a single feature or set of features that
they have been trained for. Consider for example the existing methods for sentiment
analysis: they often provide a value between -1 and 1 estimating the sentiment polarity
for a text that can be anything from one word to a whole page.

Conversely, there are tasks where extracting from texts (usually short) as much
knowledge as possible is crucial for the success of the task. Consider a dialogue system,
where deep understanding is essential for a meaningful, engaging and close to natural
interaction with a human subject. It is no longer enough to assign a few shallow

1http://alchemy.cs.washington.edu/
2http://i.stanford.edu/hazy/hazy/tuffy/

http://alchemy.cs.washington.edu/
http://i.stanford.edu/hazy/hazy/tuffy/
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features to the input text, but a deep understanding is required for planning a proper
response. Or consider the case of information extraction or relationship mining tasks,
when knowledge is extracted at the sub-sentential level. In these scenarios the deeper
linguistic understanding possible the better.

A parser of the type aimed at in this thesis would be useful to solve the latter set
of tasks. The rich constituency parses could be an essential ingredient for further tasks
such as anaphora resolution, clausal taxis analysis, rhetoric relation parsing, speech act
detection, discourse model generation, knowledge extraction. All these tasks are needed
for creating an intelligent interactive agent for various domains such as call centres,
ticketing agencies, intelligent cars and houses, personal companions or assistants.

In marketing research, understanding the clients needs is one of the primary tasks.
Mining intelligence from the unstructured data sources such as forums, customer
reviews and social media posts is a particularly difficult task. In these cases the more
features are available in the analysis the better. Employing parsers that offer deep
feature rich outputs such as Parsimonious Vole satisfies this need. With the help
of statistical methods feature correlations, predictive models and interpretations can
be conveyed for the potential task at hand such as satisfaction level, requirement or
complaint discovery.

11.4 Final word
In this work I have advanced the work on automatic text analysis in SFL style. The
current implementation did not succeed to employ a full SF grammar, and, just like
previous attempts, had to accept limitations in the grammar size while maintaining
broad language coverage. This task is particularly difficult because of the richness of
such grammars. Nonetheless, modern applications desperately need deep feature-rich
text analysis functionalities.

My view is that building on top of successful results achieved with other grammars
by mapping them to parts of SF grammar constitutes a viable solution to the creation
of SFL style constituency structures. Furthermore, employing graph patterns to enrich
the structure with systemic features is the key ingredient for performing a delicate
feature-rich text analysis.

By further advancing the proposed methods and exploring new ways to cut through
complexity, my hope is that one day automatically generating feature-rich text analysis
will become the de facto approach employed in truly intelligent agents that can, to a
large extent, do with language what people do.
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Appendix A

SFL Syntactic Overview

A.1 Cardiff Syntax
Elements found in all groups: Linker (&), Inferer (I), Starter (st), Ender (e)
Units: Sentence (Σ), Clause (Cl), Nominal Group (ngp), Prepositional Group (pgp),
Quality Group (qlgp), Quantity Group (qtgp), Genitive Cluster (gencl)

A.1.1 Clause

Relative Order of Elements in the Unit Structure:
& |B |L |F |A |C |O |S |O |N |A |I |X |M |Mex |C |A |V |E
Clause May fill: Σ (85%), C (7%), A (4%), Q (2%), f (0.5%), s, qtf, S, m, cv, po
Elements of the Clause: Adjunct (A), Binder (B), Complement (C), Formulaic
Element (F), Infinitive Element (I), Let Element (L),Main Verb (M), Main Verb
Extension (Mex), Negator (N), Operator (O), Subject (S), Vocative (V), Auxiliary
Verb (A), X extension (Xex), Linker (&), Starter (St), Ender(E)

A.1.2 Nominal Group

Possible Relative Order of Elements in the Unit Structure:
& |rd |v |pd |v |qd |v |sd |v |od |v |td |v |dd |m |h |q |e
Filling probabilities of the ngp: S (45%), C (32%), cv (15%), A (3%), m (2%),
Mex, V, rd, pd, fd, qd, td, q, dt, po
Elements of the ngp: Representational determiner (rd), Selector (v), Partitive De-
terminer (pd), Fractionative Determiner (fd), Quantifying Determiner (qd), Superlative
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Determiner (sd), Ordinative Determiner (od), Qualifier-Introducing Determiner (qid),
Typic Determiner (td), Deictic Determiner (dd), Modifier (m), Head (h), Qualifier (q)

A.1.3 Prepositional Group

Possible Relative Order of Elements in the Unit Structure:
& |pt |p |cv |p |e
Filling Probabilities of the pgp: C (55%), a (30%), q (12%), s (2%) Mex, S, cv, f,
qtf
Elements of the pgp: Preposition (p), Prepositional Temperer (pt), Completive (c)

A.1.4 Quality Group

Possible Relative Order of Elements in the Unit Structure:
& |qld |qlq |et |dt |at |a |dt |s |f |s |e
Filling probabilities of the qgp: c (38%), m (36%), A (24%), sd (0.5%), Mex, Xex,
od, q, dt, at, p, S
Elements of the qlgp: Quality Group Deictic (qld), Quality Group Quantifier (qlq),
Emphasizing Temperer (et), Degree Temperer (dt), Adjunctival Temperer (at), Apex
(a), Scope (s), Finisher (f)

A.1.5 Quantity Group

Possible Relative Order of Elements in the Unit Structure:
ad |am |qtf |e Filling probabilities of the qtgp: qd (85%), A (8%), dt (6%), B, p,
ad, fd, sd Elements of the qtgp Adjustor (ad), Amount (am), Quantity Finisher
(qf)

A.1.6 Genitive Cluster

Possible Relative Order of Elements in the Unit Structure:
& |po |g |o |e
Filling probabilities of the gencl: dd (99%), h, m, qld
Elements of the gencl: Possessor (po), Genitive Element (g), Own Element (o)
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A.2 Sydney Syntax

A.2.1 Logical

Possible Relative Order of Elements in the Unit Structure:
Pre-Modifier |Head |Post-Modifier

A.2.2 Textual

Possible Relative Order of Elements in the Clause Structure:
Theme |Rheme
New |Given |New

A.2.3 Interactional

Possible Relative Order of Elements in the Clause Structure:
Residue |Mood |Residue |Mood tag
Adjunct |Complement |Finite |Subject |Finite |Adjunct |Predicator |Complement| Ad-
junct

A.2.4 Experiential

Possible Relative Order of Elements in the Clause Structure:
Circumstance |Participant |Circumstance |Process| Participant |Circumstance
Possible Relative Order of Elements in the Nominal Group Structure:
Deictic |Numerative |Epithet | Classifier| Thing |Qualifier
Possible Relative Order of Elements in the Verbal Group Structure:
Finite |Marker |Auxiliary |Event
Possible Relative Order of Elements in the Adverbial and Preposition
Group Structure: Modifier |Head |Post-Modifier
Possible Relative Order of Elements in the Prepositional Phrase Structure:
Predicator |Complement
Process |Range
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A.2.5 Taxis

Possible Relative Order of Elements in the Parataxis Structure:
Initiating |Continuing
Possible Relative Order of Elements in the Hypoataxis Structure:
Dependent |Dominant |Dependent



Appendix B

Stanford Dependency schema

The Stanford dependency relations as defined in Stanford typed dependencies manual
(Marneffe & Manning 2008a)
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dep - dependent

arg - argument

agent - agent

comp - complement

acomp - adjectival complement

attr - attributive

ccomp - clausal complement with internal subject

xcomp - clausal complement with external subject

compl - complementizer

obj - object

dobj - direct object

iobj - indirect object

pobj - object of preposition

mark - marker (word introducing an advcl)

rel - relative (word introducing a rcmod)

subj - subject

nsubj - nominal subject

nsubjpass - passive nominal subject

csubj - clausal subject

csubjpass - passive clausal subject

...

Fig. B.1 The Stanford dependency scheme - part one
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dep - dependent
...

mod - modifier

abbrev - abbreviation modifier

amod - adjectival modifier

appos - appositional modifier

advcl - adverbial clause modifier

purpcl - purpose clause modifier

det - determiner

predet - predeterminer

preconj - preconjunct

infmod - infinitival modifier

partmod - participial modifier

advmod - adverbial modifier

neg - negation modifier

rcmod - relative clause modifier

quantmod - quantifier modifier

tmod - temporal modifier

measure - measure-phrase modifier

nn - noun compound modifier

num - numeric modifier

number - element of compound number

prep - prepositional modifier

poss - possession modifier

possessive - possessive modifier (’s)

prt - phrasal verb particle

...

Fig. B.2 The Stanford dependency scheme - part two
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dep - dependent
...

aux - auxiliary

auxpass - passive auxiliary

cop - copula

cc - coordination

conj - conjunct

expl - expletive (expletive "there")

parataxis - parataxis

punct - punctuation

ref - referent

sdep - semantic dependent

xsubj - controlling subject

Fig. B.3 The Stanford dependency scheme - part three



Appendix C

Penn treebank tag-set
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Tag Description Example
CC conjunction, coordinating and, or, but
CD cardinal number five, three, 13%
DT determiner the, a, these
EX existential there there were six boys
FW foreign word mais
IN conjunction, subordinating or preposition of, on, before, unless
JJ adjective nice, easy
JJR adjective, comparative nicer, easier
JJS adjective, superlative nicest, easiest
LS list item marker
MD verb, modal auxillary may, should
NN noun, singular or mass tiger, chair, laughter
NNS noun, plural tigers, chairs, insects
NNP noun, proper singular Germany, God, Alice
NNPS noun, proper plural we met two Christmases ago
PDT predeterminer both his children
POS possessive ending ’s
PRP pronoun, personal me, you, it
PRP$ pronoun, possessive my, your, our
RB adverb extremely, loudly, hard
RBR adverb, comparative better
RBS adverb, superlative best
RP adverb, particle about, off, up
SYM symbol %
TO infinitival to what to do?
UH interjection oh, oops, gosh
VB verb, base form think
VBZ verb, 3rd person singular present she thinks
VBP verb, non-3rd person singular present I think
VBD verb, past tense they thought
VBN verb, past participle a sunken ship
VBG verb, gerund or present participle thinking is fun
WDT wh-determiner which, whatever, whichever
WP wh-pronoun, personal what, who, whom
WP$ wh-pronoun, possessive whose, whosever
WRB wh-adverb where, when
. punctuation mark, sentence closer .;?*
, punctuation mark, comma ,
: punctuation mark, colon :
( contextual separator, left paren (
) contextual separator, right paren )

Table C.1 Penn Treebank tag set



Appendix D

Rules for clause complex taxis
analysis

Below are presented a set of templates capturing taxis analysis which were derived
based on descriptions in IFG3 (Halliday & Matthiessen 2004) and examples provided
there.

The tables shall be interpreted as follows. First three two columns represent choices
in the taxis system network. The third column represents an informal meaning of
the choices. Forth column contains an open set of markers that may signal the tactic
relation. Last column contains a set of formal patterns in which the taxis relation can
be realised.

The syntax for decoding patterns is as follows:

• @1 means the first clause (for paratactic relations) or higher clause (for hypotactic
relations);

• @2 means the second clause (for paratactic relations) or lower clause (for hy-
potactic relations);

• mrkr stands for any of the markers listed in the fourth column;

• // represents delimiter between multiple patterns;

• punctuation marks , ; - in the pattern stand for punctuation marks in the
sentence;

• round brackets () mean that the element is optional, so it may occur but it may
as well be absent;
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• text in quotes “” just like punctuation marks is the text that occurs in the
sentence;

• square brackets [] immediately after clause symbols mean presence (+) of absence
(-) of a feature (e.g. +negative means the feature negative must be selected
among the clause features) or of a clause element (e.g. -Subject means that the
clause must not have an element which functions as Subject)
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Type Category Meaning Paratactic markers Paratactic template
Elaboration Exposition in other words, I.e or, or rather, in other words, that is to say,

I mean, i.e.,
@1 (,) (mrkr) @2 // @1 ; @2 // @1 , @2
// @1 - @2 //

Elaboration Exemplification for example, e.g. for example, for instance, in particular,
e.g.

@1 (,) (mrkr) @2 // @1 ; @2 // @1 , @2
// @1 - @2 //

Elaboration Clarification to be precise, viz. in fact, actually, indeed, at least, i.e., viz., @1 (,) (mrkr) @2 // @1 ; @2 // @1 , @2
// @1 - @2 //

Extension additive:positive X and Y and, but also, too, in addition, also, more-
over, on the other hand, and that

@1 mrkr @2 // "not only" @1 "but also"
@2 // "both" @1 "and" @2 //

Extension additive:negative not X and not Y nor, too, in addition, also, moreover, on
the other hand

@1 mrkr @2 // ("neither") @1 "nor" @2 //

Extension additive:adversative (but) X and conversely
Y

too, in addition, also, moreover, on the
other hand, but

@1 (,) mrkr @2 //

Extension variation:replacive (instead), not X but Y but not, not ? but, instead, but instead,
on the contrary

@1[+negative] mrkr @2[+positive] //
@1[+positive] mrkr @2[+negative] //

Extension variation:substractive X but not all X only, except, but @1 (,) (mrkr) @2 //
Extension alternation X or Y or, conversely, alternatively, on the other

hand
"either" @1 "or" ("else") @2 // @1 (,) mrkr
@2 //

Enhancement temporal: same time A meanwhile B and meanwhile, when, and, meanwhile,
and at that time,

@1 (,) mrkr @2 //

Enhancement temporal: later time a subsequently b and then, then, and afterwards, after-
wards, and soon afterwards, soon after-
wards

@1 (,) mrkr @2 //

Enhancement temporal: earlier time a previously b and before that, but before that, and first,
but first, and till then, and until then,

@1 (,) mrkr @2 //

Enhancement spatial: same place c there d and there @1 (,) mrkr @2 //
Enhancement manner: quality A in the way B
Enhancement manner: means N is via/by means of M and in that way, thus, and thus, whereby @1 (,) mrkr @2 //
Enhancement manner: comparison N is like M and similarly, and so, thus, as if @1 (,) mrkr @2 //
Enhancement cause: reason@1 because P so effect Q and, so, and so, and therefore, therefore @1 (,) mrkr @2 //
Enhancement cause: reason@2 effect Q because of

cause P
for, because @1 (,) mrkr @2 //

Enhancement cause: purpose because intention Q so
action P

@1 (,) mrkr @2 //

Enhancement cause: result @1 (,) mrkr @2 //
Enhancement condition: positive if P then Q and then, then, and in that case @1 (,) mrkr @2 //
Enhancement condition: negative if not p then q or else, or otherwise, otherwise @1 (,) mrkr @2 //
Enhancement condition: concessive if p then contrary to ex-

pectations Q
but, yet, and yet, still, but nevertheless,
though, however, nevertheless

@1 (,) mrkr @2 // @1 (;) mrkr @2

Table D.1 Parataxis
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Type Category Meaning Hypotactic-finite marker Hypotactic-finite template
Elaboration Exposition in other words, I.e
Elaboration Exemplification for example, e.g.
Elaboration Clarification to be precise, viz. who, whose, whom, which, that, where,

when , as
@a (,)(-)(;) mrkr @b // @a mrkr @b //

Extension additive:positive X and Y whereas, while mrkr @b , @a // @a mrkr @b
Extension additive:negative not X and not Y
Extension additive:adversative (but) X and conversely

Y
whereas, while mrkr @b , @a // @a mrkr @b

Extension variation:replacive (instead), not X but Y
Extension variation:substractive X but not all X except that, but for the fact that, but that, @a (,) mrkr @b // mrkr @b , @a //
Extension alternation X or Y "if" @a{[}+negative{]} (,)("then") @b //
Enhancement temporal: same time A meanwhile B as, while, when, as soon as, the moment,

whenever, every time, but as soon as
@a (,)mrkr @b // mrkr @b (,) @a //

Enhancement temporal: later time a subsequently b after, since, ever since, especially since,
and since, and after, then

@a (,)mrkr @b // mrkr @b (,) @a //

Enhancement temporal: earlier time a previously b before, until, till, by the time @a (,)mrkr @b // mrkr @b (,) @a //
Enhancement spatial: same place c there d as far as, where, wherever, everywhere @a (,) mrkr @b // mrkr @b , @a //
Enhancement manner: quality A in the way B as @a (,) mrkr @b // mrkr @b , @a //
Enhancement manner: means N is via/by means of M @a (,) mrkr @b // mrkr @b , @a //
Enhancement manner: comparison N is like M as, as if, like, the way @a (,) mrkr @b // mrkr @b , @a //
Enhancement cause: reason@1 because P so effect Q
Enhancement cause: reason@2 effect Q because of

cause P
because, as, since, in case, seeing that,
considering

@a (,) mrkr @b

Enhancement cause: purpose because intention Q so
action P

in order that, so that @a (,) mrkr @b

Enhancement cause: result so that @a (,) mrkr @b
Enhancement condition: positive if P then Q if, provided that, as long as, but if, in case mrkr @b (,) ("then") @a // @a (,) mrkr

@b //
Enhancement condition: negative if not p then q unless @a (,) mrkr @b
Enhancement condition: concessive if p then contrary to ex-

pectations Q
even if, even though, although, though mrkr @b (,) @a // @a (,) mrkr @b

Table D.2 Hypotaxis with lower finite clauses
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Type Category Meaning Hypo-non-finite marker Hypo-non-finite template
Elaboration Exposition in other words, I.e
Elaboration Exemplification for example, e.g.
Elaboration Clarification to be precise, viz. @a , @b[-Subj] // @a @b[-Subj] // @a ,

@b // @a @b // @b, @a //
Extension additive:positive X and Y apart from, besides, with @a (,) (mrkr) @b// mrkr @b (,) @a// @a

, @b //
Extension additive:negative not X and not Y
Extension additive:adversative (but) X and conversely

Y
without @a (,) (mrkr) @b// mrkr @b (,) @a// @a

,@b //
Extension variation:replacive (instead), not X but Y instead of @a (,) (mrkr) @b// mrkr @b (,) @a//
Extension variation:substractive X but not all X other than @a (,) (mrkr) @b// mrkr @b (,) @a//
Extension alternation X or Y
Enhancement temporal: same time A meanwhile B @a , @b // @b , @a
Enhancement temporal: later time a subsequently b
Enhancement temporal: earlier time a previously b
Enhancement spatial: same place c there d
Enhancement manner: quality A in the way B
Enhancement manner: means N is via/by means of M
Enhancement manner: comparison N is like M
Enhancement cause: reason@1 because P so effect Q @a , @b // @b , @a
Enhancement cause: reason@2 effect Q because of

cause P
Enhancement cause: purpose because intention Q so

action P
@a , @b // @b , @a

Enhancement cause: result @a , @b
Enhancement condition: positive if P then Q
Enhancement condition: negative if not p then q
Enhancement condition: concessive if p then contrary to ex-

pectations Q
Table D.3 Hypotaxis with lower non-finite clauses
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Type Category Meaning Hypo-non-finite conjunction marker Hypo-non-finite conjunction template
Elaboration Exposition in other words, I.e
Elaboration Exemplification for example, e.g.
Elaboration Clarification to be precise, viz.
Extension additive:positive X and Y
Extension additive:negative not X and not Y
Extension additive:adversative (but) X and conversely

Y
Extension variation:replacive (instead), not X but Y
Extension variation:substractive X but not all X
Extension alternation X or Y
Enhancement temporal: same time A meanwhile B while, when @a (,) mrkr @b // mrkr @b (,) @a
Enhancement temporal: later time a subsequently b since @a (,) mrkr @b // mrkr @b (,) @a
Enhancement temporal: earlier time a previously b until, till @a (,) mrkr @b // mrkr @b (,) @a
Enhancement spatial: same place c there d
Enhancement manner: quality A in the way B
Enhancement manner: means N is via/by means of M
Enhancement manner: comparison N is like M like @a (,) mrkr @b // mrkr @b (,) @a
Enhancement cause: reason@1 because P so effect Q
Enhancement cause: reason@2 effect Q because of

cause P
Enhancement cause: purpose because intention Q so

action P
Enhancement cause: result
Enhancement condition: positive if P then Q if @a (,) mrkr @b // mrkr @b (,) @a
Enhancement condition: negative if not p then q unless @a (,) mrkr @b // mrkr @b (,) @a
Enhancement condition: concessive if p then contrary to ex-

pectations Q
even if, even though, though, although @a (,) mrkr @b // mrkr @b (,) @a

Table D.4 Hypotaxis with lower non finite clause introduced by subordinating conjunction
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Type Category Meaning Hypo-non-finite preposition marker Hypo-non-finite preposition template
Elaboration Exposition in other words, I.e
Elaboration Exemplification for example, e.g.
Elaboration Clarification to be precise, viz.
Extension additive:positive X and Y
Extension additive:negative not X and not Y
Extension additive:adversative (but) X and conversely

Y
Extension variation:replacive (instead), not X but Y
Extension variation:substractive X but not all X
Extension alternation X or Y
Enhancement temporal: same time A meanwhile B in, in the course, in process of, on @a (,) mrkr @b // mrkr @b (,) @a
Enhancement temporal: later time a subsequently b after @a (,) mrkr @b // mrkr @b (,) @a
Enhancement temporal: earlier time a previously b before @a (,) mrkr @b // mrkr @b (,) @a
Enhancement spatial: same place c there d
Enhancement manner: quality A in the way B
Enhancement manner: means N is via/by means of M by, by means of @a (,) mrkr @b // mrkr @b (,) @a
Enhancement manner: comparison N is like M
Enhancement cause: reason@1 because P so effect Q
Enhancement cause: reason@2 effect Q because of

cause P
with, through, by, at, as a result, because
of, in case of, in case

@a (,) mrkr @b

Enhancement cause: purpose because intention Q so
action P

in order to, so as to, for, for the sake of,
with the aim of, for fear of

@a (,) mrkr @b // mrkr @b (,) @a

Enhancement cause: result to @a (,) mrkr @b
Enhancement condition: positive if P then Q in the event of @a (,) mrkr @b // mrkr @b (,) @a
Enhancement condition: negative if not p then q but for, without @a (,) mrkr @b // mrkr @b (,) @a
Enhancement condition: concessive if p then contrary to ex-

pectations Q
despite, in spite of, without @a (,) mrkr @b // mrkr @b (,) @a

Table D.5 Hypotaxis with lower non finite clause introduced by a preposition
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key operation parameter
acomp new constituent COMPLEMENT
advcl new constituent ADJUNCT

advmod extend current None
amod new constituent EPITHET_CLASSIFIER_OR_ORDINAL
agent new constituent COMPLEMENT_AGENT
appos new constituent APPOSITION
aux extend current None

auxpass extend current None
complm new constituent MARKER

conj extend current None
csubj new constituent SUBJECT

csubjpass new constituent SUBJECT
det new constituent DEICTIC
dobj new constituent COMPLEMENT
expl new constituent EXPLETIVE_MARKER

infmod new constituent QUALIFIER
iobj new constituent COMPLEMENT_DATIVE

mark new constituent MARKER
mwe extend current None
neg extend current None
nn extend current None

npadvmod new constituent ADJUNCT
nsubj new constituent SUBJECT

nsubjpass new constituent SUBJECT
num new constituent CARDINAL_NUMERATIVE

number extend current None
parataxis new constituent CLAUSE
partmod new constituent QUALIFIER

vmod new constituent QUALIFIER
pobj extend current None
poss new constituent POSESSOR

possessive new constituent POSESSOR
preconj extend current None
predet new constituent PREDEICTIC
prepc new constituent COMPLEMENT_ADJUNCT
prt new constituent MARKER

punct extend current None
purpcl new constituent CLAUSE

quantmod extend current None
rcmod new constituent QUALIFIER

ref extend current None
rel new constituent CLAUSE

tmod new constituent ADJUNCT
xcomp new constituent COMPLEMENT
xsubj new constituent SUBJECT

discourse new constituent DISCOURSE
goeswith extend current None
Table E.1 The rule table mapping generic dependency context to generative operations
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Key Operation Value
JJ-dep-IN new constituent MARKER
VB-dep-IN new constituent MARKER
VB-dep-VB new constituent CLAUSE
NN-dep-NN extend current None
NN-dep-VB new constituent CLAUSE
VB-dep-WP new constituent COMPLEMENT_ADJUNCT
VB-dep-NN new constituent ADJUNCT
RB-dep-IN extend current None
WR-dep-JJ extend current None
VB-dep-JJ new constituent ADJUNCT

VB-conj-VB new constituent CLAUSE
VB-cc-CC new constituent MARKER
NN-cc-CC extend current None

VB-prep-NN new constituent COMPLEMENT_ADJUNCT
VB-prep-JJ new constituent COMPLEMENT_ADJUNCT
VB-prep-PR new constituent COMPLEMENT_ADJUNCT
VB-prep-WP new constituent COMPLEMENT_ADJUNCT
VB-prep-CD new constituent COMPLEMENT_ADJUNCT
NN-prep-NN new constituent QUALIFIER
NN-prep-PR new constituent QUALIFIER

RB-npadvmod-NN extend current None
NN-npadvmod-NN extend current None
VB-npadvmod-NN new constituent ADJUNCT
JJ-npadvmod-RB extend current None
VB-advmod-RB new constituent ADJUNCT
VB-advmod-JJ new constituent ADJUNCT

VB-advmod-WR new constituent COMPLEMENT
NN-advmod-RB new constituent PREDEICTIC
VB-ccomp-NN new constituent COMPLEMENT
VB-ccomp-VB new constituent COMPLEMENT
IN-pcomp-IN new constituent COMPLEMENT_ADJUNCT
IN-pcomp-NN new constituent COMPLEMENT_ADJUNCT
IN-pcomp-CD new constituent COMPLEMENT_ADJUNCT
IN-pcomp-JJ new constituent COMPLEMENT_ADJUNCT
NN-amod-CD new constituent CARDINAL_NUMERATIVE

NN-infmod-VB new constituent QUALIFIER
CD-prep-NN new constituent QUALIFIER
NN-vmod-VB new constituent QUALIFIER
NN-prep-JJ new constituent QUALIFIER
DT-prep-NN new constituent QUALIFIER
JJ-prep-NN extend current None

Table E.2 The rule table mapping specific dependency context to generative operations





Appendix F

Normalization of PTDB and
Cardiff TRANSITIVITY system

The process type column in PTDB contains two words separated by comma. The first
one I call major as it represents a high level selection in the TRANSITIVITY system
and the second one I call minor hints at selecting a particular participant configuration.
The re-indexing consists of replacing the two features with a more delicate selection in
the TRANSITIVITY system.
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major minor new index min # roles max # roles
action one role one-role-action 1 1

two role two-role-action 2 2
three role three-role-action 3 3

relational attributive attributive 2 3
locational locational 2 3
directional directional 2 5
possessive possessive 2 3
matching matching 2 3

emotion desiderative desiderative 2 2
plux xxx emotive 2 3

perception xxx two-role-perception 2 2
3 p Ag three-role-perception 3 3

cognition xxx two-role-cognition 2 2
3 p Ag/ matchee three-role-cognition 3 3

environmental environmental x x
influential starting starting 1 2

continuing continuing 1 2
ceasing ceasing 1 2

succeeding succeeding 1 2
failing failing 1 2

causative causative 1 2
permissive permissive 1 2
enabling enabling 1 2

preventing preventing 1 2
delaying delaying 1 2
tentative tentative 1 2
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A selection of graph patterns

cl:clause
op:update

arg:{POLARITY:negative}

el:negator

(a) Negative polarity

cl:clause
op:update

arg:{POLARITY:positive}

el:negator

(b) Negative polarity

Fig. G.1 Polarity detection graph patterns

cl:clause
op:update

arg:{VOICE:passive}

in-rel:OR[auxpass, nsubjpass,
csubjpass, agent]

(a) Passive voice

cl:clause
op:update

arg:{VOICE:active}

in-rel:OR[auxpass, nsubjpass,
csubjpass, agent]

(b) Active voice

Fig. G.2 Voice detection graph patterns
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pos:VBD, cl:clause, op:update
arg:{TIME:past,

PROGRESSIVITY:non-progressive,
PERFECTIVITY:non-perfect}

pos:OR[MD,VB*]

(a) Simple past tense pattern

pos:VBD, cl:clause, op:update
arg:{TIME:present,

PROGRESSIVITY:non-progressive,
PERFECTIVITY:non-perfect}

pos:OR[MD,VB*]

(b) Simple present tense pattern
pos:VBD, , cl:clause, op:update

arg:{TIME:future,
PROGRESSIVITY:non-progressive,

PERFECTIVITY:non-perfect}

lemma:will pos:OR[MD,VB*]

(c) Simple future tense pattern

Fig. G.3 Simple past, present and future tense patterns

pos:VBG, [...]

lemma:be
pos:VBD pos:OR[MD,VB*]

(a) Past continuous tense pattern

pos:VBG, [...]

lemma:be
pos:OR[VBZ,VBP] pos:OR[MD,VB*]

(b) Present continuous tense pattern

pos:VBG, [...]

lemma:will
lemma:be

pos:OR[VB,VBP] pos:OR[MD,VB*]

(c) Future continuous tense pattern

Fig. G.4 Past, present and future continuous tense patterns
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pos:VBN, [...]

lemma:have
pos:OR[VBD,VBN] pos:OR[MD,VB*]

(a) Past perfect tense pattern

pos:VBN, [...]

lemma:have
pos:OR[VBZ,VBP] pos:OR[MD,VB*]

(b) Present perfect tense pattern

pos:VBN, [...]

lemma:will
lemma:have

pos:OR[VB,VBP] pos:OR[MD,VB*]

(c) Future perfect tense pattern

Fig. G.5 Past, present and future perfect tense patterns

pos:VBG, [...]

lemma:have
pos:OR[VBD,VBN]

lemma:be
pos:VBN pos:OR[MD,VB*]

(a) Past perfect continuous tense pattern

pos:VBG, [...]

lemma:have
pos:OR[VBZ,VBP]

lemma:be
pos:VBN pos:OR[MD,VB*]

(b) Present perfect continuous tense pattern

pos:VBG, [...]

lemma:will
lemma:have

pos:OR[VB,VBP]
lemma:be
pos:VBN pos:OR[MD,VB*]

(c) Future perfect continuous pattern

Fig. G.6 Past, present and future perfect continuous tense patterns
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Auxiliary algorithms

The Algorithm 19 and 20 below are part of the Algorithm 12 for creating the Wh null
elements.

Algorithm 19: Creating the Adjunct (circumstantial) Wh-traces
input : wh-group, dg, cg

1 begin
2 check the tense and modality for all the clauses
3 for clause in cg: from the clause of wh-group to lowest

/* create the adjunct trace in the first clause that has non
present simple tense */

4 if clause tense is not present simple:
5 create Adjunct Wh-trace for Wh-group
6 return
7 end
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Algorithm 20: Creating the Theta (participant) Wh-traces
input : wh-group, dg, cg

1 begin
2 get possible configurations for each clause from the PTDB

/* check if the higher clause is a projection and and has an
extra argument */

3 for config in higher clause configurations:
4 if (config is two role cognition and config takes expletive subject) or

(config is three role cognition and clause is passive voice):
5 higher is eligible ← True
6 break

/* check if the lower clauses might miss an argument */
7 for clause in lower clauses:
8 for config in clause configurations:
9 if number of clause theta constituents < number of config arguments:

10 lower is eligible ← True
11 break
12 if higher is eligible and lower is eligible:
13 if higher clause has “that” complementizer :
14 create Object Wh-trace in the lowest clause
15 else:
16 if Wh-group has case:
17 if Wh-group case is nominative(subjective):
18 create Subject Wh-trace in lowest clause
19 else:
20 create Object Wh-trace in lowest clause
21 else:
22 create Wh-trace with Subject function and attempt to assign theta

roles
23 if theta roles not successfully assigned in lower clause:
24 change the Wh-trace to Object function and assign theta roles
25 end



Appendix I

Annotation guidelines for OCD
corpus

I.1 Constituency
The constituency annotation is based on the Cardiff grammar (Fawcett 2008) with
some consulting of the traditional grammar (Quirk et al. 1985) for clarification; while
MOOD systemic selections are based on the Sydney grammar (Halliday & Matthiessen
2013b). Below follows a set of short descriptions aimed at helping annotators identify
main unit types and clause elements.

Clause – the main processing unit onto which meanings of different kinds are
mapped and integrated into.

• the punctuation (.?!) at the end of the sentence(the matrix clause) shall be left
outside the segment

• in clause complexes, the punctuation(,;“”-), conjunctions(and, or , but . . . ) and
other nexus markers(if, or, ) shall be left outside the segment.

Finite – a part of the verbal group expressing the tense or modality. It either
precedes the Predicator or is conflated with it in present and past simple tenses.

• If the finite is conflated with the predicate do not mark it

• The finite is the first auxiliary verb in the verb group before the subject in
declarative clauses and the auxiliary that precedes the subject in interrogative
clauses.
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Subject – the nominal group or a nominal clause that precedes the Predicator in a
clause and it is something by reference to which the proposition can be affirmed or
denied. The subject is the nearest nominal group or clause that precedes the predicator.

Predicator – the part of verbal group minus the finite constituent when they are
not conflated. It specifies additional temporal and aspectual relations, voice and the
process type (e.g. action, relation, mental process etc.) that is predicated about the
Subject. To enforce the syntactic and functional analysis proposed in the Cardiff
analysis methodology (Fawcett 2008), the complex clauses need to be separated into
individual clauses so that each comply with the “one main verb per clause” principle
(see below). The predicator is the entire verb group(main verb + auxiliaries) minus
the first auxiliary(which is the finite element)

Complement – the part of the clause that follows the Predicator and has the
potential of becoming a Subject, i.e. it can become an axis of the argument. Usually it
is a nominal group and rarely a prepositional phrase.

• The nominal group, prepositional group or clause that follows the Predicator

• exception are the copulative clauses (when the main verb is “to be”), then the
adjectives following the verb receive complement function because they receive
participant role of attribute (which is a quality)

• prepositions that can introduce complements are enumerated in table 1

• most clauses have 0 - 2 complements, exception are directional processes that
can have 0-4 complements

Adjunct – do not have the potential of becoming a Subject; therefore arguments
cannot be constructed around adjunct elements. They are realized by adverbial and
prepositional groups.

• Prepositional phrases after the clause complements

• adverbs preceding and following the predicator

• Adjuncts can occur in front of the subject, then the clause becomes thematically
marked.

• We do not annotate circumstantial adjuncts (bearing experiential information)
but ONLY comment adjuncts (serving an interpersonal modification function in
modality or appraisal). For more details see Schulz (2015) guidelines.
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Markers – prepositions, conjunctions, expletives and verb particles. We do not
annotate them. [Looking back at this rule I don’t know what was behind this decision
back in 2013].

Group – a set of words executing a particular function in a clause. The head of the
group dictates the group type and the other words in the group may have other parts
of speech and contribute to specifying enriching and further specifying the meaning of
the group.

• note: we do not make distinction between a simple group and a group complex

• prepositional group is a nominal group preceded by a preposition

I.2 Clause partition
Follow the “One main verb per clause” rule. Use the semantic analisys to guide the
sentence clause division into clauses.

When the clauses are connected by a conjunction and have their own subject/objects
then the conjunction is the clause border marker.

(130) The lion chased the tourist but she escaped alive.

(131) The lion[Ag-Ca] chased[Pr] the tourist[Af-Pos]

(132) she[Ag] escaped[Pr] alive[Ra].

When the predicators are conjoined and share subject and/or objects then each
predicator will form a new clause and borrow the subject/objects from the other clause.

(133) The lion chased and caught the tourist.

(134) the lion[Ag-Ca] chased[Pr] the tourist[Af-Pos]

(135) the lion[Ag-Ca] caught[Pr] the tourist[Af-Pos]

In the case of mental(e.g. know, think, feel, want, like), influential(e.g. start, stop,
try, continue, fail) and event relating (e.g. cause) processes the predicates are often
complex. Verbs in these classes are known as control and raising verbs (Haegeman
1991a) where a super-ordinate controls subordinate non-finite verb and binds its
participants (Subject/Complement).

In order to comply with “one main verb per clause” principle, each Main Verb of
the complex clause becomes a governor of a distinct clause. The subordinate verb
with all of its dependent nodes is assigned to a place-holder. The super-ordinate verb
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receives the place-holder as Complement with the role of Phenomena. If the subject is
missing in the subordinate clause then it is copied from the super-ordinate one.

(136) The lion wanted/began to chase the tourist.

(137) the lion[Cog] wanted/began[Pr] X[Phen]

(138) X= the lion[Ag-Ca] to chase[Pr] the tourist[Af-Pos]

The meaning of complex clause decomposition can be expressed with an equivalent
rephrasing by inserting “something that is” between the Main Verbs, as in example
below.

(139) The lion wanted/began something that is to chase the tourist.

I.3 The tricky case of prepositional phrases
There are cases in mood analysis when deciding the unit type is impossible by relying
solely on syntactic analysis (including typed dependency analysis). Prominent cases
are the prepositional phrases. These can fill both a Complement and an Adjunct role.
For mood analysis this implies that the same syntactic unit can fill a Complement and
an Adjunct, while for transitivity analysis, it implies that the same syntactic unit can
fill a Participant or a Circumstance.

(140) John goes home through London.

(141) John is building a house for Bob.

(142) Her teardrop shines like a diamond.

(143) John is building a house for ten years now.

(144) John goes to London by fast train.

In examples 140 and 141 the prepositional phrases “through London”1 and “for
Bob” are Complements and Participants (Path and Beneficiary roles) while in the
latter examples “like a diamond”, “for ten years now” and “by fast train” are Adjuncts
and Circumstances (of comparison, temporal duration and manner-means).
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I.4 Making selection from the MOOD system net-
work

Here is a brief description how to make selections in the MOOD system network.
Agency is of primary concern in this work. The rest of the features are annotated as
much as the time permits.

Agency is a clause level feature and is attributed depending on the experiential
analysis of the clause (be it via Transitive or Ergative model). It expresses whether
there is an active participant that brings about the unfolding of the process. Is the
process brought about from within or from outside? With regards to this an important
distinction to be made is between doings and happenings. The probing for doings is
usually by asking the questions “What did X do (to Y)?” If there is a suitable X then
we say that clause has an effective voice. Now effective voice can be (a) operative (that
corresponds to active voice in mood analysis) and thus realised with an agent (doer)
as subject or (b) receptive (that corresponds to passive voice in mood analysis) and
thus goal/medium or beneficiary takes the subject place while the agent is given a
secondary role. It can be either overt i.e. agentive (a prepositional phrase complement
marked in English via “by” preposition) or covert i.e. non-agentive (unspecified).

Many intransitive verbs (with only one participant) are better analysed from
Ergative perspective. In this case no external participant is implied to actuate the
process and they are realised with a Medium subject. The best question to probe
such clauses is by asking “What happened?”. If this probing is more suitable than
the one for doing the the clause receives middle selection in the agency system. The
middle configurations do not have a active or passive voices thus voice can be used as
a probing method (Halliday & Matthiessen 2013b: 336-354).

Modality should be annotated as described in Schulz (2015).

Remaining MOOD features should be annotated as described in (Halliday &
Matthiessen 2013b).
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