Typical		Conventional				In	Expressive			
1	2	3	4	5	6	7	8	9	10	11
Realisation: Conjuctions and Conjunctive Adjuncts	Realisation: Modal Adjuncts	Realisation: Circumstantials of Location (Theory, Discourse and Time,) not postmodified	Realisation: Circumstantials of Cause and Condition not postmodified	Realisation: Other Circumstantials mainly of Matter and Angle not postmodified	Prototypical realisation: postmodified Circumstantials of Cause and Condition	Prototypical realisation: Other postmodified Circumstantials	Prototypical realisation: Finite Clauses mainly of Cause/Reason& Result and Condition	Prototypical realisation: Non-Finite Clauses mainly of Manner/Means and Cause/Purpose	Prototypical realisation: Clauses with Embedded Evaluation	Prototypical realisation: Projecting Clauses
or	Obviously	In references ~town,car t}	Thus for (\ref{37}),	By this	Due to the existence of the Bianchi identity in general,	For example, in the \$O(N)\$ models, where the field is a \$N\$- component vector constrained to have constant modulus,	When this is substituted back in (\ref{02}),	Taking the covariant divergence on both sides of the first equation of motion, and using the second one,	One of the distinctive properties of the non-linear \$\sigma\$- model~ge ll} is that	This shows how
Whence, either	Indeed	In section 2	As \begin equation then	For each Gribov solution \$L_j\$,		As an alternative to the previous approach,	If we know a solution,	<pre>Inserting \$L_{\mu} = g^{\frac{3- d}{2}} U\partial_{\mu} } U^{\dagger}\$ in (\ref{07}),</pre>	The condition \$F_{\mu\nu}=0 \$ guarantees that	Note that
However,	Classically,	In section 3		For \$d>1\$			Although the system seems to be the obvious generalization of the \$2+1\$- dimensional one,	Following the Dirac algorithm	This can be shown to be equivalent to saying that	It is evident that
and	Of course,	and in section 4		However, for \$d>2\$,			Once a particular solution of (\ref{33}) is obtained,	After eliminating the second-class constraints,	As it was shown in ref.~\cite{slav},	Note that
and moreover	Indeed	In section 5		and regarding the Hamiltonian,			As they are gauge invariant by themselves,	To construct the gauge invariant functionals,	The main result we need to recall is that	We then see that

1	2	3	4	5	6	7	8	9	10	11
Thus	in particular,	From Section 1,						but to explicitly cancel them	Indeed, as \$L_0 = U\partial_0 U^{\dagger}\$, a non-zero \$L_0\$ implies that	This implies that
However,	Thus evidently	In Appendix A						To do that	An interesting property of the new system is that, because of (\ref{a3}),	We mention that
So		Now						To guarantee that	(\ref{25}) shows that	and that
To start with		In Quantum Mechanics,								It is then easy to see that
Next		In the Schroedinger representation,								and that
and		In \$2+1\$ dimensions								We have seen that
and		In this situation,								It is well known that
and										Note that
Thus										Note, however, that
However										From this it follows that
and										Note that
Then										We assume that
and										This implies that
However										We then verify that
Thus										Note however, that
Then		1			1	1		1		Note that
So										
and then					-	1		1		
Then		1				1		1		
and										