<table>
<thead>
<tr>
<th>Typical</th>
<th>Conventional</th>
<th>Instantial</th>
<th>Expressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td>Obviously</td>
<td>In references ~cite(town,cart) Thus for (ref{37}), By this</td>
<td>Due to the existence of the Bianchi identity in general, For example, in the SO(N)S models, where the field is a SNS-component vector constrained to have constant modulus, When this is substituted back in (ref{02}), Taking the covariant divergence on both sides of the first equation of motion, and using the second one,</td>
</tr>
<tr>
<td>Whence, either</td>
<td>Indeed</td>
<td>In section 2 As begin equation then For each Gribov solution SL, ϕ,</td>
<td>As an alternative to the previous approach, If we know a solution,</td>
</tr>
<tr>
<td>However,</td>
<td>Classically,</td>
<td>In section 3 For $d>1$</td>
<td>Although the system seems to be the obvious generalization of the S^2+1-dimensional one,</td>
</tr>
<tr>
<td>and</td>
<td>Of course,</td>
<td>and in section 4 However, for $d>2$,</td>
<td>Once a particular solution of (ref{33}) is obtained, After eliminating the second-class constraints,</td>
</tr>
<tr>
<td>and moreover</td>
<td>Indeed</td>
<td>In section 5 and regarding the Hamiltonian,</td>
<td>As they are gauge invariant by themselves, To construct the gauge invariant functionals,</td>
</tr>
</tbody>
</table>
Thus in particular, from Section 1, but explicitly cancel them. Indeed, as $L_0 = U \partial_0 U^\dagger$, a non-zero L_0 implies that

This implies that

However, evidently in Appendix A. To do that, we mention that. We have seen that. It is then easy to see that.

To guarantee (11), (15) shows that

Thus, however, that

Then we verify that

Thus, note however, that

Note that

Note, however, that

We assume that

We then verify that

It is well known that

We mention that.

An interesting property of the new system is

Next, in the Schrödinger representation, in $S^2+1\Sigma$,

In Quantum Mechanics, it is easy to see that

In $2+1$ dimensions, we have seen that

And we note, however, that

Note, however, that

We then verify that

Thus, however, that

Then, we mention that.

So, now.

However, evidently in Appendix A.